reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
; REQUIRES: asserts
; RUN: opt < %s -force-vector-width=2 -loop-vectorize -debug-only=loop-vectorize -disable-output 2>&1 | FileCheck %s

target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128"
target triple = "aarch64--linux-gnu"

; Check predication-related cost calculations, including scalarization overhead
; and block probability scaling. Note that the functionality being tested is
; not specific to AArch64. We specify a target to get actual values for the
; instruction costs.

; CHECK-LABEL: predicated_udiv
;
; This test checks that we correctly compute the cost of the predicated udiv
; instruction. If we assume the block probability is 50%, we compute the cost
; as:
;
; Cost of udiv:
;   (udiv(2) + extractelement(6) + insertelement(3)) / 2 = 5
;
; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp2, %tmp3
; CHECK: Found an estimated cost of 5 for VF 2 For instruction: %tmp4 = udiv i32 %tmp2, %tmp3
;
define i32 @predicated_udiv(i32* %a, i32* %b, i1 %c, i64 %n) {
entry:
  br label %for.body

for.body:
  %i = phi i64 [ 0, %entry ], [ %i.next, %for.inc ]
  %r = phi i32 [ 0, %entry ], [ %tmp6, %for.inc ]
  %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i
  %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
  %tmp2 = load i32, i32* %tmp0, align 4
  %tmp3 = load i32, i32* %tmp1, align 4
  br i1 %c, label %if.then, label %for.inc

if.then:
  %tmp4 = udiv i32 %tmp2, %tmp3
  br label %for.inc

for.inc:
  %tmp5 = phi i32 [ %tmp3, %for.body ], [ %tmp4, %if.then]
  %tmp6 = add i32 %r, %tmp5
  %i.next = add nuw nsw i64 %i, 1
  %cond = icmp slt i64 %i.next, %n
  br i1 %cond, label %for.body, label %for.end

for.end:
  %tmp7 = phi i32 [ %tmp6, %for.inc ]
  ret i32 %tmp7
}

; CHECK-LABEL: predicated_store
;
; This test checks that we correctly compute the cost of the predicated store
; instruction. If we assume the block probability is 50%, we compute the cost
; as:
;
; Cost of store:
;   (store(4) + extractelement(3)) / 2 = 3
;
; CHECK: Scalarizing and predicating: store i32 %tmp2, i32* %tmp0, align 4
; CHECK: Found an estimated cost of 3 for VF 2 For instruction: store i32 %tmp2, i32* %tmp0, align 4
;
define void @predicated_store(i32* %a, i1 %c, i32 %x, i64 %n) {
entry:
  br label %for.body

for.body:
  %i = phi i64 [ 0, %entry ], [ %i.next, %for.inc ]
  %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i
  %tmp1 = load i32, i32* %tmp0, align 4
  %tmp2 = add nsw i32 %tmp1, %x
  br i1 %c, label %if.then, label %for.inc

if.then:
  store i32 %tmp2, i32* %tmp0, align 4
  br label %for.inc

for.inc:
  %i.next = add nuw nsw i64 %i, 1
  %cond = icmp slt i64 %i.next, %n
  br i1 %cond, label %for.body, label %for.end

for.end:
  ret void
}

; CHECK-LABEL: predicated_udiv_scalarized_operand
;
; This test checks that we correctly compute the cost of the predicated udiv
; instruction and the add instruction it uses. The add is scalarized and sunk
; inside the predicated block.  If we assume the block probability is 50%, we
; compute the cost as:
;
; Cost of add:
;   (add(2) + extractelement(3)) / 2 = 2
; Cost of udiv:
;   (udiv(2) + extractelement(3) + insertelement(3)) / 2 = 4
;
; CHECK: Scalarizing: %tmp3 = add nsw i32 %tmp2, %x
; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp2, %tmp3
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: %tmp3 = add nsw i32 %tmp2, %x
; CHECK: Found an estimated cost of 4 for VF 2 For instruction: %tmp4 = udiv i32 %tmp2, %tmp3
;
define i32 @predicated_udiv_scalarized_operand(i32* %a, i1 %c, i32 %x, i64 %n) {
entry:
  br label %for.body

for.body:
  %i = phi i64 [ 0, %entry ], [ %i.next, %for.inc ]
  %r = phi i32 [ 0, %entry ], [ %tmp6, %for.inc ]
  %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i
  %tmp2 = load i32, i32* %tmp0, align 4
  br i1 %c, label %if.then, label %for.inc

if.then:
  %tmp3 = add nsw i32 %tmp2, %x
  %tmp4 = udiv i32 %tmp2, %tmp3
  br label %for.inc

for.inc:
  %tmp5 = phi i32 [ %tmp2, %for.body ], [ %tmp4, %if.then]
  %tmp6 = add i32 %r, %tmp5
  %i.next = add nuw nsw i64 %i, 1
  %cond = icmp slt i64 %i.next, %n
  br i1 %cond, label %for.body, label %for.end

for.end:
  %tmp7 = phi i32 [ %tmp6, %for.inc ]
  ret i32 %tmp7
}

; CHECK-LABEL: predicated_store_scalarized_operand
;
; This test checks that we correctly compute the cost of the predicated store
; instruction and the add instruction it uses. The add is scalarized and sunk
; inside the predicated block.  If we assume the block probability is 50%, we
; compute the cost as:
;
; Cost of add:
;   (add(2) + extractelement(3)) / 2 = 2
; Cost of store:
;   store(4) / 2 = 2
;
; CHECK: Scalarizing: %tmp2 = add nsw i32 %tmp1, %x
; CHECK: Scalarizing and predicating: store i32 %tmp2, i32* %tmp0, align 4
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: %tmp2 = add nsw i32 %tmp1, %x
; CHECK: Found an estimated cost of 2 for VF 2 For instruction: store i32 %tmp2, i32* %tmp0, align 4
;
define void @predicated_store_scalarized_operand(i32* %a, i1 %c, i32 %x, i64 %n) {
entry:
  br label %for.body

for.body:
  %i = phi i64 [ 0, %entry ], [ %i.next, %for.inc ]
  %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i
  %tmp1 = load i32, i32* %tmp0, align 4
  br i1 %c, label %if.then, label %for.inc

if.then:
  %tmp2 = add nsw i32 %tmp1, %x
  store i32 %tmp2, i32* %tmp0, align 4
  br label %for.inc

for.inc:
  %i.next = add nuw nsw i64 %i, 1
  %cond = icmp slt i64 %i.next, %n
  br i1 %cond, label %for.body, label %for.end

for.end:
  ret void
}

; CHECK-LABEL: predication_multi_context
;
; This test checks that we correctly compute the cost of multiple predicated
; instructions in the same block. The sdiv, udiv, and store must be scalarized
; and predicated. The sub feeding the store is scalarized and sunk inside the
; store's predicated block. However, the add feeding the sdiv and udiv cannot
; be sunk and is not scalarized. If we assume the block probability is 50%, we
; compute the cost as:
;
; Cost of add:
;   add(1) = 1
; Cost of sdiv:
;   (sdiv(2) + extractelement(6) + insertelement(3)) / 2 = 5
; Cost of udiv:
;   (udiv(2) + extractelement(6) + insertelement(3)) / 2 = 5
; Cost of sub:
;   (sub(2) + extractelement(3)) / 2 = 2
; Cost of store:
;   store(4) / 2 = 2
;
; CHECK-NOT: Scalarizing: %tmp2 = add i32 %tmp1, %x
; CHECK:     Scalarizing and predicating: %tmp3 = sdiv i32 %tmp1, %tmp2
; CHECK:     Scalarizing and predicating: %tmp4 = udiv i32 %tmp3, %tmp2
; CHECK:     Scalarizing: %tmp5 = sub i32 %tmp4, %x
; CHECK:     Scalarizing and predicating: store i32 %tmp5, i32* %tmp0, align 4
; CHECK:     Found an estimated cost of 1 for VF 2 For instruction: %tmp2 = add i32 %tmp1, %x
; CHECK:     Found an estimated cost of 5 for VF 2 For instruction: %tmp3 = sdiv i32 %tmp1, %tmp2
; CHECK:     Found an estimated cost of 5 for VF 2 For instruction: %tmp4 = udiv i32 %tmp3, %tmp2
; CHECK:     Found an estimated cost of 2 for VF 2 For instruction: %tmp5 = sub i32 %tmp4, %x
; CHECK:     Found an estimated cost of 2 for VF 2 For instruction: store i32 %tmp5, i32* %tmp0, align 4
;
define void @predication_multi_context(i32* %a, i1 %c, i32 %x, i64 %n) {
entry:
  br label %for.body

for.body:
  %i = phi i64 [ 0, %entry ], [ %i.next, %for.inc ]
  %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i
  %tmp1 = load i32, i32* %tmp0, align 4
  br i1 %c, label %if.then, label %for.inc

if.then:
  %tmp2 = add i32 %tmp1, %x
  %tmp3 = sdiv i32 %tmp1, %tmp2
  %tmp4 = udiv i32 %tmp3, %tmp2
  %tmp5 = sub i32 %tmp4, %x
  store i32 %tmp5, i32* %tmp0, align 4
  br label %for.inc

for.inc:
  %i.next = add nuw nsw i64 %i, 1
  %cond = icmp slt i64 %i.next, %n
  br i1 %cond, label %for.body, label %for.end

for.end:
  ret void
}