reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -S -instcombine < %s | FileCheck %s

declare double @llvm.sqrt.f64(double) nounwind readnone speculatable
declare <2 x float> @llvm.sqrt.v2f32(<2 x float>)
declare void @use(double)

; sqrt(a) * sqrt(b) no math flags

define double @sqrt_a_sqrt_b(double %a, double %b) {
; CHECK-LABEL: @sqrt_a_sqrt_b(
; CHECK-NEXT:    [[TMP1:%.*]] = call double @llvm.sqrt.f64(double [[A:%.*]])
; CHECK-NEXT:    [[TMP2:%.*]] = call double @llvm.sqrt.f64(double [[B:%.*]])
; CHECK-NEXT:    [[MUL:%.*]] = fmul double [[TMP1]], [[TMP2]]
; CHECK-NEXT:    ret double [[MUL]]
;
  %1 = call double @llvm.sqrt.f64(double %a)
  %2 = call double @llvm.sqrt.f64(double %b)
  %mul = fmul double %1, %2
  ret double %mul
}

; sqrt(a) * sqrt(b) fast-math, multiple uses

define double @sqrt_a_sqrt_b_multiple_uses(double %a, double %b) {
; CHECK-LABEL: @sqrt_a_sqrt_b_multiple_uses(
; CHECK-NEXT:    [[TMP1:%.*]] = call fast double @llvm.sqrt.f64(double [[A:%.*]])
; CHECK-NEXT:    [[TMP2:%.*]] = call fast double @llvm.sqrt.f64(double [[B:%.*]])
; CHECK-NEXT:    [[MUL:%.*]] = fmul fast double [[TMP1]], [[TMP2]]
; CHECK-NEXT:    call void @use(double [[TMP2]])
; CHECK-NEXT:    ret double [[MUL]]
;
  %1 = call fast double @llvm.sqrt.f64(double %a)
  %2 = call fast double @llvm.sqrt.f64(double %b)
  %mul = fmul fast double %1, %2
  call void @use(double %2)
  ret double %mul
}

; sqrt(a) * sqrt(b) => sqrt(a*b) with fast-math

define double @sqrt_a_sqrt_b_reassoc_nnan(double %a, double %b) {
; CHECK-LABEL: @sqrt_a_sqrt_b_reassoc_nnan(
; CHECK-NEXT:    [[TMP1:%.*]] = fmul reassoc nnan double [[A:%.*]], [[B:%.*]]
; CHECK-NEXT:    [[TMP2:%.*]] = call reassoc nnan double @llvm.sqrt.f64(double [[TMP1]])
; CHECK-NEXT:    ret double [[TMP2]]
;
  %1 = call double @llvm.sqrt.f64(double %a)
  %2 = call double @llvm.sqrt.f64(double %b)
  %mul = fmul reassoc nnan double %1, %2
  ret double %mul
}

; nnan disallows the possibility that both operands are negative,
; so we won't return a number when the answer should be NaN.

define double @sqrt_a_sqrt_b_reassoc(double %a, double %b) {
; CHECK-LABEL: @sqrt_a_sqrt_b_reassoc(
; CHECK-NEXT:    [[TMP1:%.*]] = call double @llvm.sqrt.f64(double [[A:%.*]])
; CHECK-NEXT:    [[TMP2:%.*]] = call double @llvm.sqrt.f64(double [[B:%.*]])
; CHECK-NEXT:    [[MUL:%.*]] = fmul reassoc double [[TMP1]], [[TMP2]]
; CHECK-NEXT:    ret double [[MUL]]
;
  %1 = call double @llvm.sqrt.f64(double %a)
  %2 = call double @llvm.sqrt.f64(double %b)
  %mul = fmul reassoc double %1, %2
  ret double %mul
}

; sqrt(a) * sqrt(b) * sqrt(c) * sqrt(d) => sqrt(a*b*c*d) with fast-math
; 'reassoc nnan' on the fmuls is all that is required, but check propagation of other FMF.

define double @sqrt_a_sqrt_b_sqrt_c_sqrt_d_reassoc(double %a, double %b, double %c, double %d) {
; CHECK-LABEL: @sqrt_a_sqrt_b_sqrt_c_sqrt_d_reassoc(
; CHECK-NEXT:    [[TMP1:%.*]] = fmul reassoc nnan arcp double [[A:%.*]], [[B:%.*]]
; CHECK-NEXT:    [[TMP2:%.*]] = fmul reassoc nnan double [[TMP1]], [[C:%.*]]
; CHECK-NEXT:    [[TMP3:%.*]] = fmul reassoc nnan ninf double [[TMP2]], [[D:%.*]]
; CHECK-NEXT:    [[TMP4:%.*]] = call reassoc nnan ninf double @llvm.sqrt.f64(double [[TMP3]])
; CHECK-NEXT:    ret double [[TMP4]]
;
  %1 = call double @llvm.sqrt.f64(double %a)
  %2 = call double @llvm.sqrt.f64(double %b)
  %3 = call double @llvm.sqrt.f64(double %c)
  %4 = call double @llvm.sqrt.f64(double %d)
  %mul = fmul reassoc nnan arcp double %1, %2
  %mul1 = fmul reassoc nnan double %mul, %3
  %mul2 = fmul reassoc nnan ninf double %mul1, %4
  ret double %mul2
}

define double @rsqrt_squared(double %x) {
; CHECK-LABEL: @rsqrt_squared(
; CHECK-NEXT:    [[SQUARED:%.*]] = fdiv fast double 1.000000e+00, [[X:%.*]]
; CHECK-NEXT:    ret double [[SQUARED]]
;
  %sqrt = call fast double @llvm.sqrt.f64(double %x)
  %rsqrt = fdiv fast double 1.0, %sqrt
  %squared = fmul fast double %rsqrt, %rsqrt
  ret double %squared
}

define double @sqrt_divisor_squared(double %x, double %y) {
; CHECK-LABEL: @sqrt_divisor_squared(
; CHECK-NEXT:    [[TMP1:%.*]] = fmul reassoc nnan nsz double [[Y:%.*]], [[Y]]
; CHECK-NEXT:    [[SQUARED:%.*]] = fdiv reassoc nnan nsz double [[TMP1]], [[X:%.*]]
; CHECK-NEXT:    ret double [[SQUARED]]
;
  %sqrt = call double @llvm.sqrt.f64(double %x)
  %div = fdiv double %y, %sqrt
  %squared = fmul reassoc nnan nsz double %div, %div
  ret double %squared
}

define <2 x float> @sqrt_dividend_squared(<2 x float> %x, <2 x float> %y) {
; CHECK-LABEL: @sqrt_dividend_squared(
; CHECK-NEXT:    [[TMP1:%.*]] = fmul fast <2 x float> [[Y:%.*]], [[Y]]
; CHECK-NEXT:    [[SQUARED:%.*]] = fdiv fast <2 x float> [[X:%.*]], [[TMP1]]
; CHECK-NEXT:    ret <2 x float> [[SQUARED]]
;
  %sqrt = call <2 x float> @llvm.sqrt.v2f32(<2 x float> %x)
  %div = fdiv fast <2 x float> %sqrt, %y
  %squared = fmul fast <2 x float> %div, %div
  ret <2 x float> %squared
}

; We do not transform this because it would result in an extra instruction.
; This might still be a good optimization for the backend.

define double @sqrt_divisor_squared_extra_use(double %x, double %y) {
; CHECK-LABEL: @sqrt_divisor_squared_extra_use(
; CHECK-NEXT:    [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT:    [[DIV:%.*]] = fdiv double [[Y:%.*]], [[SQRT]]
; CHECK-NEXT:    call void @use(double [[DIV]])
; CHECK-NEXT:    [[SQUARED:%.*]] = fmul reassoc nnan nsz double [[DIV]], [[DIV]]
; CHECK-NEXT:    ret double [[SQUARED]]
;
  %sqrt = call double @llvm.sqrt.f64(double %x)
  %div = fdiv double %y, %sqrt
  call void @use(double %div)
  %squared = fmul reassoc nnan nsz double %div, %div
  ret double %squared
}

define double @sqrt_dividend_squared_extra_use(double %x, double %y) {
; CHECK-LABEL: @sqrt_dividend_squared_extra_use(
; CHECK-NEXT:    [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT:    call void @use(double [[SQRT]])
; CHECK-NEXT:    [[TMP1:%.*]] = fmul fast double [[Y:%.*]], [[Y]]
; CHECK-NEXT:    [[SQUARED:%.*]] = fdiv fast double [[X]], [[TMP1]]
; CHECK-NEXT:    ret double [[SQUARED]]
;
  %sqrt = call double @llvm.sqrt.f64(double %x)
  call void @use(double %sqrt)
  %div = fdiv fast double %sqrt, %y
  %squared = fmul fast double %div, %div
  ret double %squared
}

; Negative test - require 'nsz'.

define double @sqrt_divisor_not_enough_FMF(double %x, double %y) {
; CHECK-LABEL: @sqrt_divisor_not_enough_FMF(
; CHECK-NEXT:    [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT:    [[DIV:%.*]] = fdiv double [[Y:%.*]], [[SQRT]]
; CHECK-NEXT:    [[SQUARED:%.*]] = fmul reassoc nnan double [[DIV]], [[DIV]]
; CHECK-NEXT:    ret double [[SQUARED]]
;
  %sqrt = call double @llvm.sqrt.f64(double %x)
  %div = fdiv double %y, %sqrt
  %squared = fmul reassoc nnan double %div, %div
  ret double %squared
}

; TODO: This is a special-case of the general pattern. If we have a constant
; operand, the extra use limitation could be eased because this does not
; result in an extra instruction (1.0 * 1.0 is constant folded).

define double @rsqrt_squared_extra_use(double %x) {
; CHECK-LABEL: @rsqrt_squared_extra_use(
; CHECK-NEXT:    [[SQRT:%.*]] = call fast double @llvm.sqrt.f64(double [[X:%.*]])
; CHECK-NEXT:    [[RSQRT:%.*]] = fdiv fast double 1.000000e+00, [[SQRT]]
; CHECK-NEXT:    call void @use(double [[RSQRT]])
; CHECK-NEXT:    [[SQUARED:%.*]] = fmul fast double [[RSQRT]], [[RSQRT]]
; CHECK-NEXT:    ret double [[SQUARED]]
;
  %sqrt = call fast double @llvm.sqrt.f64(double %x)
  %rsqrt = fdiv fast double 1.0, %sqrt
  call void @use(double %rsqrt)
  %squared = fmul fast double %rsqrt, %rsqrt
  ret double %squared
}