reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
; RUN: opt -S < %s -instcombine | FileCheck %s

target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
target triple = "x86_64-apple-macosx10.7.0"

; Check transforms involving atomic operations

define i32 @test1(i32* %p) {
; CHECK-LABEL: define i32 @test1(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: shl i32 %x, 1
  %x = load atomic i32, i32* %p seq_cst, align 4
  %y = load i32, i32* %p, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

define i32 @test2(i32* %p) {
; CHECK-LABEL: define i32 @test2(
; CHECK: %x = load volatile i32, i32* %p, align 4
; CHECK: %y = load volatile i32, i32* %p, align 4
  %x = load volatile i32, i32* %p, align 4
  %y = load volatile i32, i32* %p, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

; The exact semantics of mixing volatile and non-volatile on the same
; memory location are a bit unclear, but conservatively, we know we don't
; want to remove the volatile.
define i32 @test3(i32* %p) {
; CHECK-LABEL: define i32 @test3(
; CHECK: %x = load volatile i32, i32* %p, align 4
  %x = load volatile i32, i32* %p, align 4
  %y = load i32, i32* %p, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

; Forwarding from a stronger ordered atomic is fine
define i32 @test4(i32* %p) {
; CHECK-LABEL: define i32 @test4(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: shl i32 %x, 1
  %x = load atomic i32, i32* %p seq_cst, align 4
  %y = load atomic i32, i32* %p unordered, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

; Forwarding from a non-atomic is not.  (The earlier load 
; could in priciple be promoted to atomic and then forwarded, 
; but we can't just  drop the atomic from the load.)
define i32 @test5(i32* %p) {
; CHECK-LABEL: define i32 @test5(
; CHECK: %x = load atomic i32, i32* %p unordered, align 4
  %x = load atomic i32, i32* %p unordered, align 4
  %y = load i32, i32* %p, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

; Forwarding atomic to atomic is fine
define i32 @test6(i32* %p) {
; CHECK-LABEL: define i32 @test6(
; CHECK: %x = load atomic i32, i32* %p unordered, align 4
; CHECK: shl i32 %x, 1
  %x = load atomic i32, i32* %p unordered, align 4
  %y = load atomic i32, i32* %p unordered, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

; FIXME: we currently don't do anything for monotonic
define i32 @test7(i32* %p) {
; CHECK-LABEL: define i32 @test7(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: %y = load atomic i32, i32* %p monotonic, align 4
  %x = load atomic i32, i32* %p seq_cst, align 4
  %y = load atomic i32, i32* %p monotonic, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

; FIXME: We could forward in racy code
define i32 @test8(i32* %p) {
; CHECK-LABEL: define i32 @test8(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: %y = load atomic i32, i32* %p acquire, align 4
  %x = load atomic i32, i32* %p seq_cst, align 4
  %y = load atomic i32, i32* %p acquire, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

; An unordered access to null is still unreachable.  There's no
; ordering imposed.
define i32 @test9() {
; CHECK-LABEL: define i32 @test9(
; CHECK: store i32 undef, i32* null
  %x = load atomic i32, i32* null unordered, align 4
  ret i32 %x
}

define i32 @test9_no_null_opt() #0 {
; CHECK-LABEL: define i32 @test9_no_null_opt(
; CHECK: load atomic i32, i32* null unordered
  %x = load atomic i32, i32* null unordered, align 4
  ret i32 %x
}

; FIXME: Could also fold
define i32 @test10() {
; CHECK-LABEL: define i32 @test10(
; CHECK: load atomic i32, i32* null monotonic
  %x = load atomic i32, i32* null monotonic, align 4
  ret i32 %x
}

define i32 @test10_no_null_opt() #0 {
; CHECK-LABEL: define i32 @test10_no_null_opt(
; CHECK: load atomic i32, i32* null monotonic
  %x = load atomic i32, i32* null monotonic, align 4
  ret i32 %x
}

; Would this be legal to fold?  Probably?
define i32 @test11() {
; CHECK-LABEL: define i32 @test11(
; CHECK: load atomic i32, i32* null seq_cst
  %x = load atomic i32, i32* null seq_cst, align 4
  ret i32 %x
}

define i32 @test11_no_null_opt() #0 {
; CHECK-LABEL: define i32 @test11_no_null_opt(
; CHECK: load atomic i32, i32* null seq_cst
  %x = load atomic i32, i32* null seq_cst, align 4
  ret i32 %x
}

; An unordered access to null is still unreachable.  There's no
; ordering imposed.
define i32 @test12() {
; CHECK-LABEL: define i32 @test12(
; CHECK: store atomic i32 undef, i32* null
  store atomic i32 0, i32* null unordered, align 4
  ret i32 0
}

define i32 @test12_no_null_opt() #0 {
; CHECK-LABEL: define i32 @test12_no_null_opt(
; CHECK: store atomic i32 0, i32* null unordered
  store atomic i32 0, i32* null unordered, align 4
  ret i32 0
}

; FIXME: Could also fold
define i32 @test13() {
; CHECK-LABEL: define i32 @test13(
; CHECK: store atomic i32 0, i32* null monotonic
  store atomic i32 0, i32* null monotonic, align 4
  ret i32 0
}

define i32 @test13_no_null_opt() #0 {
; CHECK-LABEL: define i32 @test13_no_null_opt(
; CHECK: store atomic i32 0, i32* null monotonic
  store atomic i32 0, i32* null monotonic, align 4
  ret i32 0
}

; Would this be legal to fold?  Probably?
define i32 @test14() {
; CHECK-LABEL: define i32 @test14(
; CHECK: store atomic i32 0, i32* null seq_cst
  store atomic i32 0, i32* null seq_cst, align 4
  ret i32 0
}

define i32 @test14_no_null_opt() #0 {
; CHECK-LABEL: define i32 @test14_no_null_opt(
; CHECK: store atomic i32 0, i32* null seq_cst
  store atomic i32 0, i32* null seq_cst, align 4
  ret i32 0
}

@a = external global i32
@b = external global i32

define i32 @test15(i1 %cnd) {
; CHECK-LABEL: define i32 @test15(
; CHECK: load atomic i32, i32* @a unordered, align 4
; CHECK: load atomic i32, i32* @b unordered, align 4
  %addr = select i1 %cnd, i32* @a, i32* @b
  %x = load atomic i32, i32* %addr unordered, align 4
  ret i32 %x
}

; FIXME: This would be legal to transform
define i32 @test16(i1 %cnd) {
; CHECK-LABEL: define i32 @test16(
; CHECK: load atomic i32, i32* %addr monotonic, align 4
  %addr = select i1 %cnd, i32* @a, i32* @b
  %x = load atomic i32, i32* %addr monotonic, align 4
  ret i32 %x
}

; FIXME: This would be legal to transform
define i32 @test17(i1 %cnd) {
; CHECK-LABEL: define i32 @test17(
; CHECK: load atomic i32, i32* %addr seq_cst, align 4
  %addr = select i1 %cnd, i32* @a, i32* @b
  %x = load atomic i32, i32* %addr seq_cst, align 4
  ret i32 %x
}

define i32 @test22(i1 %cnd) {
; CHECK-LABEL: define i32 @test22(
; CHECK: [[PHI:%.*]] = phi i32
; CHECK: store atomic i32 [[PHI]], i32* @a unordered, align 4
  br i1 %cnd, label %block1, label %block2

block1:
  store atomic i32 1, i32* @a unordered, align 4
  br label %merge
block2:
  store atomic i32 2, i32* @a unordered, align 4
  br label %merge

merge:
  ret i32 0
}

; TODO: probably also legal here
define i32 @test23(i1 %cnd) {
; CHECK-LABEL: define i32 @test23(
; CHECK: br i1 %cnd, label %block1, label %block2
  br i1 %cnd, label %block1, label %block2

block1:
  store atomic i32 1, i32* @a monotonic, align 4
  br label %merge
block2:
  store atomic i32 2, i32* @a monotonic, align 4
  br label %merge

merge:
  ret i32 0
}

declare void @clobber()

define i32 @test18(float* %p) {
; CHECK-LABEL: define i32 @test18(
; CHECK: load atomic i32, i32* [[A:%.*]] unordered, align 4
; CHECK: store atomic i32 [[B:%.*]], i32* [[C:%.*]] unordered, align 4
  %x = load atomic float, float* %p unordered, align 4
  call void @clobber() ;; keep the load around
  store atomic float %x, float* %p unordered, align 4
  ret i32 0
}

; TODO: probably also legal in this case
define i32 @test19(float* %p) {
; CHECK-LABEL: define i32 @test19(
; CHECK: load atomic float, float* %p seq_cst, align 4
; CHECK: store atomic float %x, float* %p seq_cst, align 4
  %x = load atomic float, float* %p seq_cst, align 4
  call void @clobber() ;; keep the load around
  store atomic float %x, float* %p seq_cst, align 4
  ret i32 0
}

define i32 @test20(i32** %p, i8* %v) {
; CHECK-LABEL: define i32 @test20(
; CHECK: store atomic i8* %v, i8** [[D:%.*]] unordered, align 4
  %cast = bitcast i8* %v to i32*
  store atomic i32* %cast, i32** %p unordered, align 4
  ret i32 0
}

define i32 @test21(i32** %p, i8* %v) {
; CHECK-LABEL: define i32 @test21(
; CHECK: store atomic i32* %cast, i32** %p monotonic, align 4
  %cast = bitcast i8* %v to i32*
  store atomic i32* %cast, i32** %p monotonic, align 4
  ret i32 0
}

define void @pr27490a(i8** %p1, i8** %p2) {
; CHECK-LABEL: define void @pr27490
; CHECK: %1 = bitcast i8** %p1 to i64*
; CHECK: %l1 = load i64, i64* %1, align 8
; CHECK: %2 = bitcast i8** %p2 to i64*
; CHECK: store volatile i64 %l1, i64* %2, align 8
  %l = load i8*, i8** %p1
  store volatile i8* %l, i8** %p2
  ret void
}

define void @pr27490b(i8** %p1, i8** %p2) {
; CHECK-LABEL: define void @pr27490
; CHECK: %1 = bitcast i8** %p1 to i64*
; CHECK: %l1 = load i64, i64* %1, align 8
; CHECK: %2 = bitcast i8** %p2 to i64*
; CHECK: store atomic i64 %l1, i64* %2 seq_cst, align 8
  %l = load i8*, i8** %p1
  store atomic i8* %l, i8** %p2 seq_cst, align 8
  ret void
}

;; At the moment, we can't form atomic vectors by folding since these are 
;; not representable in the IR.  This was pr29121.  The right long term
;; solution is to extend the IR to handle this case.
define <2 x float> @no_atomic_vector_load(i64* %p) {
; CHECK-LABEL @no_atomic_vector_load
; CHECK: load atomic i64, i64* %p unordered, align 8
  %load = load atomic i64, i64* %p unordered, align 8
  %.cast = bitcast i64 %load to <2 x float>
  ret <2 x float> %.cast
}

define void @no_atomic_vector_store(<2 x float> %p, i8* %p2) {
; CHECK-LABEL: @no_atomic_vector_store
; CHECK: store atomic i64 %1, i64* %2 unordered, align 8
  %1 = bitcast <2 x float> %p to i64
  %2 = bitcast i8* %p2 to i64*
  store atomic i64 %1, i64* %2 unordered, align 8
  ret void
}

attributes #0 = { "null-pointer-is-valid"="true" }