reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
; RUN: opt < %s -inline-threshold=0 -always-inline -S | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK-CALL
;
; Ensure the threshold has no impact on these decisions.
; RUN: opt < %s -inline-threshold=20000000 -always-inline -S | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK-CALL
; RUN: opt < %s -inline-threshold=-20000000 -always-inline -S | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK-CALL
;
; The new pass manager doesn't re-use any threshold based infrastructure for
; the always inliner, but test that we get the correct result. The new PM
; always inliner also doesn't support inlining call-site alwaysinline
; annotations. It isn't clear that this is a reasonable use case for
; 'alwaysinline'.
; RUN: opt < %s -passes=always-inline -S | FileCheck %s --check-prefix=CHECK

define internal i32 @inner1() alwaysinline {
; CHECK-NOT: @inner1(
  ret i32 1
}
define i32 @outer1() {
; CHECK-LABEL: @outer1(
; CHECK-NOT: call
; CHECK: ret

   %r = call i32 @inner1()
   ret i32 %r
}

; The always inliner can't DCE arbitrary internal functions. PR2945
define internal i32 @pr2945() nounwind {
; CHECK-LABEL: @pr2945(
  ret i32 0
}

define internal void @inner2(i32 %N) alwaysinline {
; CHECK-NOT: @inner2(
  %P = alloca i32, i32 %N
  ret void
}
define void @outer2(i32 %N) {
; The always inliner (unlike the normal one) should be willing to inline
; a function with a dynamic alloca into one without a dynamic alloca.
; rdar://6655932
;
; CHECK-LABEL: @outer2(
; CHECK-NOT: call void @inner2
; CHECK-NOT: call void @inner2
; CHECK: ret void

  call void @inner2( i32 %N )
  ret void
}

declare i32 @a() returns_twice
declare i32 @b() returns_twice

; Cannot alwaysinline when that would introduce a returns_twice call.
define internal i32 @inner3() alwaysinline {
; CHECK-LABEL: @inner3(
entry:
  %call = call i32 @a() returns_twice
  %add = add nsw i32 1, %call
  ret i32 %add
}
define i32 @outer3() {
entry:
; CHECK-LABEL: @outer3(
; CHECK-NOT: call i32 @a
; CHECK: ret

  %call = call i32 @inner3()
  %add = add nsw i32 1, %call
  ret i32 %add
}

define internal i32 @inner4() alwaysinline returns_twice {
; CHECK-NOT: @inner4(
entry:
  %call = call i32 @b() returns_twice
  %add = add nsw i32 1, %call
  ret i32 %add
}

define i32 @outer4() {
entry:
; CHECK-LABEL: @outer4(
; CHECK: call i32 @b()
; CHECK: ret

  %call = call i32 @inner4() returns_twice
  %add = add nsw i32 1, %call
  ret i32 %add
}

; We can't inline this even though it has alwaysinline!
define internal i32 @inner5(i8* %addr) alwaysinline {
; CHECK-LABEL: @inner5(
entry:
  indirectbr i8* %addr, [ label %one, label %two ]

one:
  ret i32 42

two:
  ret i32 44
}
define i32 @outer5(i32 %x) {
; CHECK-LABEL: @outer5(
; CHECK: call i32 @inner5
; CHECK: ret

  %cmp = icmp slt i32 %x, 42
  %addr = select i1 %cmp, i8* blockaddress(@inner5, %one), i8* blockaddress(@inner5, %two)
  %call = call i32 @inner5(i8* %addr)
  ret i32 %call
}

; We alwaysinline a function that call itself recursively.
define internal void @inner6(i32 %x) alwaysinline {
; CHECK-LABEL: @inner6(
entry:
  %icmp = icmp slt i32 %x, 0
  br i1 %icmp, label %return, label %bb

bb:
  %sub = sub nsw i32 %x, 1
  call void @inner6(i32 %sub)
  ret void

return:
  ret void
}
define void @outer6() {
; CHECK-LABEL: @outer6(
; CHECK: call void @inner6(i32 42)
; CHECK: ret

entry:
  call void @inner6(i32 42)
  ret void
}

; This is not an alwaysinline function and is actually external.
define i32 @inner7() {
; CHECK-LABEL: @inner7(
  ret i32 1
}
define i32 @outer7() {
; CHECK-CALL-LABEL: @outer7(
; CHECK-CALL-NOT: call
; CHECK-CALL: ret

   %r = call i32 @inner7() alwaysinline
   ret i32 %r
}

define internal float* @inner8(float* nocapture align 128 %a) alwaysinline {
; CHECK-NOT: @inner8(
  ret float* %a
}
define float @outer8(float* nocapture %a) {
; CHECK-LABEL: @outer8(
; CHECK-NOT: call float* @inner8
; CHECK: ret

  %inner_a = call float* @inner8(float* %a)
  %f = load float, float* %inner_a, align 4
  ret float %f
}


; The 'inner9*' and 'outer9' functions are designed to check that we remove
; a function that is inlined by the always inliner even when it is used by
; a complex constant expression prior to being inlined.

; The 'a' function gets used in a complex constant expression that, despite
; being constant folded, means it isn't dead. As a consequence it shouldn't be
; deleted. If it is, then the constant expression needs to become more complex
; to accurately test this scenario.
define internal void @inner9a(i1 %b) alwaysinline {
; CHECK-LABEL: @inner9a(
entry:
  ret void
}

define internal void @inner9b(i1 %b) alwaysinline {
; CHECK-NOT: @inner9b(
entry:
  ret void
}

declare void @dummy9(i1 %b)

define void @outer9() {
; CHECK-LABEL: @outer9(
entry:
  ; First we use @inner9a in a complex constant expression that may get folded
  ; but won't get removed, and then we call it which will get inlined. Despite
  ; this the function can't be deleted because of the constant expression
  ; usage.
  %sink = alloca i1
  store volatile i1 icmp eq (i64 ptrtoint (void (i1)* @inner9a to i64), i64 ptrtoint(void (i1)* @dummy9 to i64)), i1* %sink
; CHECK: store volatile
  call void @inner9a(i1 false)
; CHECK-NOT: call void @inner9a

  ; Next we call @inner9b passing in a constant expression. This constant
  ; expression will in fact be removed by inlining, so we should also be able
  ; to delete the function.
  call void @inner9b(i1 icmp eq (i64 ptrtoint (void (i1)* @inner9b to i64), i64 ptrtoint(void (i1)* @dummy9 to i64)))
; CHECK-NOT: @inner9b

  ret void
; CHECK: ret void
}

; The 'inner10' and 'outer10' functions test a frustrating consquence of the
; current 'alwaysinline' semantic model. Because such functions are allowed to
; be external functions, it may be necessary to both inline all of their uses
; and leave them in the final output. These tests can be removed if and when
; we restrict alwaysinline further.
define void @inner10() alwaysinline {
; CHECK-LABEL: @inner10(
entry:
  ret void
}

define void @outer10() {
; CHECK-LABEL: @outer10(
entry:
  call void @inner10()
; CHECK-NOT: call void @inner10

  ret void
; CHECK: ret void
}

; The 'inner11' and 'outer11' functions test another dimension of non-internal
; functions with alwaysinline. These functions use external linkages that we can
; actually remove safely and so we should.
define linkonce void @inner11a() alwaysinline {
; CHECK-NOT: @inner11a(
entry:
  ret void
}

define available_externally void @inner11b() alwaysinline {
; CHECK-NOT: @inner11b(
entry:
  ret void
}

define void @outer11() {
; CHECK-LABEL: @outer11(
entry:
  call void @inner11a()
  call void @inner11b()
; CHECK-NOT: call void @inner11a
; CHECK-NOT: call void @inner11b

  ret void
; CHECK: ret void
}

; The 'inner12' and 'outer12' functions test that we don't remove functions
; which are part of a comdat group even if they otherwise seem dead.
$comdat12 = comdat any

define linkonce void @inner12() alwaysinline comdat($comdat12) {
; CHECK-LABEL: @inner12(
  ret void
}

define void @outer12() comdat($comdat12) {
; CHECK-LABEL: @outer12(
entry:
  call void @inner12()
; CHECK-NOT: call void @inner12

  ret void
; CHECK: ret void
}

; The 'inner13*' and 'outer13' functions test that we do remove functions
; which are part of a comdat group where all of the members are removed during
; always inlining.
$comdat13 = comdat any

define linkonce void @inner13a() alwaysinline comdat($comdat13) {
; CHECK-NOT: @inner13a(
  ret void
}

define linkonce void @inner13b() alwaysinline comdat($comdat13) {
; CHECK-NOT: @inner13b(
  ret void
}

define void @outer13() {
; CHECK-LABEL: @outer13(
entry:
  call void @inner13a()
  call void @inner13b()
; CHECK-NOT: call void @inner13a
; CHECK-NOT: call void @inner13b

  ret void
; CHECK: ret void
}

define void @inner14() readnone nounwind {
; CHECK: define void @inner14
  ret void
}

define void @outer14() {
; CHECK: call void @inner14
  call void @inner14()
  ret void
}