reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
; RUN: llc < %s -asm-verbose=false -disable-wasm-fallthrough-return-opt -wasm-keep-registers | FileCheck %s

; Usually MIPS hosts uses a legacy (non IEEE 754-2008) encoding for NaNs.
; Tests like `nan_f32` failed in attempt to compare hard-coded IEEE 754-2008
; NaN value and a legacy NaN value provided by a system.
; XFAIL: mips-, mipsel-, mips64-, mips64el-

; Test that basic immediates assemble as expected.

target datalayout = "e-m:e-p:32:32-i64:64-n32:64-S128"
target triple = "wasm32-unknown-unknown"

; CHECK-LABEL: zero_i32:
; CHECK-NEXT: .functype zero_i32 () -> (i32){{$}}
; CHECK-NEXT: i32.const $push[[NUM:[0-9]+]]=, 0{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i32 @zero_i32() {
  ret i32 0
}

; CHECK-LABEL: one_i32:
; CHECK-NEXT: .functype one_i32 () -> (i32){{$}}
; CHECK-NEXT: i32.const $push[[NUM:[0-9]+]]=, 1{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i32 @one_i32() {
  ret i32 1
}

; CHECK-LABEL: max_i32:
; CHECK-NEXT: .functype max_i32 () -> (i32){{$}}
; CHECK-NEXT: i32.const $push[[NUM:[0-9]+]]=, 2147483647{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i32 @max_i32() {
  ret i32 2147483647
}

; CHECK-LABEL: min_i32:
; CHECK-NEXT: .functype min_i32 () -> (i32){{$}}
; CHECK-NEXT: i32.const $push[[NUM:[0-9]+]]=, -2147483648{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i32 @min_i32() {
  ret i32 -2147483648
}

; CHECK-LABEL: zero_i64:
; CHECK-NEXT: .functype zero_i64 () -> (i64){{$}}
; CHECK-NEXT: i64.const $push[[NUM:[0-9]+]]=, 0{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i64 @zero_i64() {
  ret i64 0
}

; CHECK-LABEL: one_i64:
; CHECK-NEXT: .functype one_i64 () -> (i64){{$}}
; CHECK-NEXT: i64.const $push[[NUM:[0-9]+]]=, 1{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i64 @one_i64() {
  ret i64 1
}

; CHECK-LABEL: max_i64:
; CHECK-NEXT: .functype max_i64 () -> (i64){{$}}
; CHECK-NEXT: i64.const $push[[NUM:[0-9]+]]=, 9223372036854775807{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i64 @max_i64() {
  ret i64 9223372036854775807
}

; CHECK-LABEL: min_i64:
; CHECK-NEXT: .functype min_i64 () -> (i64){{$}}
; CHECK-NEXT: i64.const $push[[NUM:[0-9]+]]=, -9223372036854775808{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define i64 @min_i64() {
  ret i64 -9223372036854775808
}

; CHECK-LABEL: negzero_f32:
; CHECK-NEXT: .functype negzero_f32 () -> (f32){{$}}
; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, -0x0p0{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define float @negzero_f32() {
  ret float -0.0
}

; CHECK-LABEL: zero_f32:
; CHECK-NEXT: .functype zero_f32 () -> (f32){{$}}
; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, 0x0p0{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define float @zero_f32() {
  ret float 0.0
}

; CHECK-LABEL: one_f32:
; CHECK-NEXT: .functype one_f32 () -> (f32){{$}}
; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, 0x1p0{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define float @one_f32() {
  ret float 1.0
}

; CHECK-LABEL: two_f32:
; CHECK-NEXT: .functype two_f32 () -> (f32){{$}}
; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, 0x1p1{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define float @two_f32() {
  ret float 2.0
}

; CHECK-LABEL: nan_f32:
; CHECK-NEXT: .functype nan_f32 () -> (f32){{$}}
; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, nan{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define float @nan_f32() {
  ret float 0x7FF8000000000000
}

; CHECK-LABEL: negnan_f32:
; CHECK-NEXT: .functype negnan_f32 () -> (f32){{$}}
; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, -nan{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define float @negnan_f32() {
  ret float 0xFFF8000000000000
}

; CHECK-LABEL: inf_f32:
; CHECK-NEXT: .functype inf_f32 () -> (f32){{$}}
; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, infinity{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define float @inf_f32() {
  ret float 0x7FF0000000000000
}

; CHECK-LABEL: neginf_f32:
; CHECK-NEXT: .functype neginf_f32 () -> (f32){{$}}
; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, -infinity{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define float @neginf_f32() {
  ret float 0xFFF0000000000000
}

; CHECK-LABEL: custom_nan_f32:
; CHECK-NEXT: .functype custom_nan_f32 () -> (f32){{$}}
; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, -nan:0x6bcdef{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define float @custom_nan_f32() {
  ret float 0xFFFD79BDE0000000
}

; TODO: LLVM's MC layer stores f32 operands as host doubles, requiring a
; conversion, so the bits of the NaN are not fully preserved.

; CHECK-LABEL: custom_nans_f32:
; CHECK-NEXT: .functype custom_nans_f32 () -> (f32){{$}}
; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, -nan:0x6bcdef{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define float @custom_nans_f32() {
  ret float 0xFFF579BDE0000000
}

; CHECK-LABEL: negzero_f64:
; CHECK-NEXT: .functype negzero_f64 () -> (f64){{$}}
; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, -0x0p0{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define double @negzero_f64() {
  ret double -0.0
}

; CHECK-LABEL: zero_f64:
; CHECK-NEXT: .functype zero_f64 () -> (f64){{$}}
; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, 0x0p0{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define double @zero_f64() {
  ret double 0.0
}

; CHECK-LABEL: one_f64:
; CHECK-NEXT: .functype one_f64 () -> (f64){{$}}
; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, 0x1p0{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define double @one_f64() {
  ret double 1.0
}

; CHECK-LABEL: two_f64:
; CHECK-NEXT: .functype two_f64 () -> (f64){{$}}
; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, 0x1p1{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define double @two_f64() {
  ret double 2.0
}

; CHECK-LABEL: nan_f64:
; CHECK-NEXT: .functype nan_f64 () -> (f64){{$}}
; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, nan{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define double @nan_f64() {
  ret double 0x7FF8000000000000
}

; CHECK-LABEL: negnan_f64:
; CHECK-NEXT: .functype negnan_f64 () -> (f64){{$}}
; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, -nan{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define double @negnan_f64() {
  ret double 0xFFF8000000000000
}

; CHECK-LABEL: inf_f64:
; CHECK-NEXT: .functype inf_f64 () -> (f64){{$}}
; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, infinity{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define double @inf_f64() {
  ret double 0x7FF0000000000000
}

; CHECK-LABEL: neginf_f64:
; CHECK-NEXT: .functype neginf_f64 () -> (f64){{$}}
; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, -infinity{{$}}
; CHECK-NEXT: return $pop[[NUM]]{{$}}
define double @neginf_f64() {
  ret double 0xFFF0000000000000
}

;; Custom NaN playloads are currently not always preserved because of the use of
;; native doubles in the MC layer. TODO: fix this problem or decide we don't
;; care about preserving NaN payloads.

; XXX-CHECK-LABEL: custom_nan_f64:
; XXX-CHECK-NEXT: .functype custom_nan_f64 () -> (f64){{$}}
; XXX-CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, -nan:0xabcdef0123456{{$}}
; XXX-CHECK-NEXT: return $pop[[NUM]]{{$}}
; define double @custom_nan_f64() {
;   ret double 0xFFFABCDEF0123456
; }

; XXX-CHECK-LABEL: custom_nans_f64:
; XXX-CHECK-NEXT: .functype custom_nans_f64 () -> (f64){{$}}
; XXX-CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, -nan:0x2bcdef0123456{{$}}
; XXX-CHECK-NEXT: return $pop[[NUM]]{{$}}
; define double @custom_nans_f64() {
;   ret double 0xFFF2BCDEF0123456
; }