reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
/*
 * kmp_dispatch_hier.h -- hierarchical scheduling methods and data structures
 */

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef KMP_DISPATCH_HIER_H
#define KMP_DISPATCH_HIER_H
#include "kmp.h"
#include "kmp_dispatch.h"

// Layer type for scheduling hierarchy
enum kmp_hier_layer_e {
  LAYER_THREAD = -1,
  LAYER_L1,
  LAYER_L2,
  LAYER_L3,
  LAYER_NUMA,
  LAYER_LOOP,
  LAYER_LAST
};

// Convert hierarchy type (LAYER_L1, LAYER_L2, etc.) to C-style string
static inline const char *__kmp_get_hier_str(kmp_hier_layer_e type) {
  switch (type) {
  case kmp_hier_layer_e::LAYER_THREAD:
    return "THREAD";
  case kmp_hier_layer_e::LAYER_L1:
    return "L1";
  case kmp_hier_layer_e::LAYER_L2:
    return "L2";
  case kmp_hier_layer_e::LAYER_L3:
    return "L3";
  case kmp_hier_layer_e::LAYER_NUMA:
    return "NUMA";
  case kmp_hier_layer_e::LAYER_LOOP:
    return "WHOLE_LOOP";
  case kmp_hier_layer_e::LAYER_LAST:
    return "LAST";
  }
  KMP_ASSERT(0);
  // Appease compilers, should never get here
  return "ERROR";
}

// Structure to store values parsed from OMP_SCHEDULE for scheduling hierarchy
typedef struct kmp_hier_sched_env_t {
  int size;
  int capacity;
  enum sched_type *scheds;
  kmp_int32 *small_chunks;
  kmp_int64 *large_chunks;
  kmp_hier_layer_e *layers;
  // Append a level of the hierarchy
  void append(enum sched_type sched, kmp_int32 chunk, kmp_hier_layer_e layer) {
    if (capacity == 0) {
      scheds = (enum sched_type *)__kmp_allocate(sizeof(enum sched_type) *
                                                 kmp_hier_layer_e::LAYER_LAST);
      small_chunks = (kmp_int32 *)__kmp_allocate(sizeof(kmp_int32) *
                                                 kmp_hier_layer_e::LAYER_LAST);
      large_chunks = (kmp_int64 *)__kmp_allocate(sizeof(kmp_int64) *
                                                 kmp_hier_layer_e::LAYER_LAST);
      layers = (kmp_hier_layer_e *)__kmp_allocate(sizeof(kmp_hier_layer_e) *
                                                  kmp_hier_layer_e::LAYER_LAST);
      capacity = kmp_hier_layer_e::LAYER_LAST;
    }
    int current_size = size;
    KMP_DEBUG_ASSERT(current_size < kmp_hier_layer_e::LAYER_LAST);
    scheds[current_size] = sched;
    layers[current_size] = layer;
    small_chunks[current_size] = chunk;
    large_chunks[current_size] = (kmp_int64)chunk;
    size++;
  }
  // Sort the hierarchy using selection sort, size will always be small
  // (less than LAYER_LAST) so it is not necessary to use an nlog(n) algorithm
  void sort() {
    if (size <= 1)
      return;
    for (int i = 0; i < size; ++i) {
      int switch_index = i;
      for (int j = i + 1; j < size; ++j) {
        if (layers[j] < layers[switch_index])
          switch_index = j;
      }
      if (switch_index != i) {
        kmp_hier_layer_e temp1 = layers[i];
        enum sched_type temp2 = scheds[i];
        kmp_int32 temp3 = small_chunks[i];
        kmp_int64 temp4 = large_chunks[i];
        layers[i] = layers[switch_index];
        scheds[i] = scheds[switch_index];
        small_chunks[i] = small_chunks[switch_index];
        large_chunks[i] = large_chunks[switch_index];
        layers[switch_index] = temp1;
        scheds[switch_index] = temp2;
        small_chunks[switch_index] = temp3;
        large_chunks[switch_index] = temp4;
      }
    }
  }
  // Free all memory
  void deallocate() {
    if (capacity > 0) {
      __kmp_free(scheds);
      __kmp_free(layers);
      __kmp_free(small_chunks);
      __kmp_free(large_chunks);
      scheds = NULL;
      layers = NULL;
      small_chunks = NULL;
      large_chunks = NULL;
    }
    size = 0;
    capacity = 0;
  }
} kmp_hier_sched_env_t;

extern int __kmp_dispatch_hand_threading;
extern kmp_hier_sched_env_t __kmp_hier_scheds;

// Sizes of layer arrays bounded by max number of detected L1s, L2s, etc.
extern int __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LAST + 1];
extern int __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LAST + 1];

extern int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type);
extern int __kmp_dispatch_get_id(int gtid, kmp_hier_layer_e type);
extern int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1,
                                        kmp_hier_layer_e t2);
extern void __kmp_dispatch_free_hierarchies(kmp_team_t *team);

template <typename T> struct kmp_hier_shared_bdata_t {
  typedef typename traits_t<T>::signed_t ST;
  volatile kmp_uint64 val[2];
  kmp_int32 status[2];
  T lb[2];
  T ub[2];
  ST st[2];
  dispatch_shared_info_template<T> sh[2];
  void zero() {
    val[0] = val[1] = 0;
    status[0] = status[1] = 0;
    lb[0] = lb[1] = 0;
    ub[0] = ub[1] = 0;
    st[0] = st[1] = 0;
    sh[0].u.s.iteration = sh[1].u.s.iteration = 0;
  }
  void set_next_hand_thread(T nlb, T nub, ST nst, kmp_int32 nstatus,
                            kmp_uint64 index) {
    lb[1 - index] = nlb;
    ub[1 - index] = nub;
    st[1 - index] = nst;
    status[1 - index] = nstatus;
  }
  void set_next(T nlb, T nub, ST nst, kmp_int32 nstatus, kmp_uint64 index) {
    lb[1 - index] = nlb;
    ub[1 - index] = nub;
    st[1 - index] = nst;
    status[1 - index] = nstatus;
    sh[1 - index].u.s.iteration = 0;
  }

  kmp_int32 get_next_status(kmp_uint64 index) const {
    return status[1 - index];
  }
  T get_next_lb(kmp_uint64 index) const { return lb[1 - index]; }
  T get_next_ub(kmp_uint64 index) const { return ub[1 - index]; }
  ST get_next_st(kmp_uint64 index) const { return st[1 - index]; }
  dispatch_shared_info_template<T> volatile *get_next_sh(kmp_uint64 index) {
    return &(sh[1 - index]);
  }

  kmp_int32 get_curr_status(kmp_uint64 index) const { return status[index]; }
  T get_curr_lb(kmp_uint64 index) const { return lb[index]; }
  T get_curr_ub(kmp_uint64 index) const { return ub[index]; }
  ST get_curr_st(kmp_uint64 index) const { return st[index]; }
  dispatch_shared_info_template<T> volatile *get_curr_sh(kmp_uint64 index) {
    return &(sh[index]);
  }
};

/*
 * In the barrier implementations, num_active is the number of threads that are
 * attached to the kmp_hier_top_unit_t structure in the scheduling hierarchy.
 * bdata is the shared barrier data that resides on the kmp_hier_top_unit_t
 * structure. tdata is the thread private data that resides on the thread
 * data structure.
 *
 * The reset_shared() method is used to initialize the barrier data on the
 * kmp_hier_top_unit_t hierarchy structure
 *
 * The reset_private() method is used to initialize the barrier data on the
 * thread's private dispatch buffer structure
 *
 * The barrier() method takes an id, which is that thread's id for the
 * kmp_hier_top_unit_t structure, and implements the barrier.  All threads wait
 * inside barrier() until all fellow threads who are attached to that
 * kmp_hier_top_unit_t structure have arrived.
 */

// Core barrier implementation
// Can be used in a unit with between 2 to 8 threads
template <typename T> class core_barrier_impl {
  static inline kmp_uint64 get_wait_val(int num_active) {
    kmp_uint64 wait_val = 0LL;
    switch (num_active) {
    case 2:
      wait_val = 0x0101LL;
      break;
    case 3:
      wait_val = 0x010101LL;
      break;
    case 4:
      wait_val = 0x01010101LL;
      break;
    case 5:
      wait_val = 0x0101010101LL;
      break;
    case 6:
      wait_val = 0x010101010101LL;
      break;
    case 7:
      wait_val = 0x01010101010101LL;
      break;
    case 8:
      wait_val = 0x0101010101010101LL;
      break;
    default:
      // don't use the core_barrier_impl for more than 8 threads
      KMP_ASSERT(0);
    }
    return wait_val;
  }

public:
  static void reset_private(kmp_int32 num_active,
                            kmp_hier_private_bdata_t *tdata);
  static void reset_shared(kmp_int32 num_active,
                           kmp_hier_shared_bdata_t<T> *bdata);
  static void barrier(kmp_int32 id, kmp_hier_shared_bdata_t<T> *bdata,
                      kmp_hier_private_bdata_t *tdata);
};

template <typename T>
void core_barrier_impl<T>::reset_private(kmp_int32 num_active,
                                         kmp_hier_private_bdata_t *tdata) {
  tdata->num_active = num_active;
  tdata->index = 0;
  tdata->wait_val[0] = tdata->wait_val[1] = get_wait_val(num_active);
}
template <typename T>
void core_barrier_impl<T>::reset_shared(kmp_int32 num_active,
                                        kmp_hier_shared_bdata_t<T> *bdata) {
  bdata->val[0] = bdata->val[1] = 0LL;
  bdata->status[0] = bdata->status[1] = 0LL;
}
template <typename T>
void core_barrier_impl<T>::barrier(kmp_int32 id,
                                   kmp_hier_shared_bdata_t<T> *bdata,
                                   kmp_hier_private_bdata_t *tdata) {
  kmp_uint64 current_index = tdata->index;
  kmp_uint64 next_index = 1 - current_index;
  kmp_uint64 current_wait_value = tdata->wait_val[current_index];
  kmp_uint64 next_wait_value =
      (current_wait_value ? 0 : get_wait_val(tdata->num_active));
  KD_TRACE(10, ("core_barrier_impl::barrier(): T#%d current_index:%llu "
                "next_index:%llu curr_wait:%llu next_wait:%llu\n",
                __kmp_get_gtid(), current_index, next_index, current_wait_value,
                next_wait_value));
  char v = (current_wait_value ? 0x1 : 0x0);
  (RCAST(volatile char *, &(bdata->val[current_index])))[id] = v;
  __kmp_wait<kmp_uint64>(&(bdata->val[current_index]), current_wait_value,
                         __kmp_eq<kmp_uint64> USE_ITT_BUILD_ARG(NULL));
  tdata->wait_val[current_index] = next_wait_value;
  tdata->index = next_index;
}

// Counter barrier implementation
// Can be used in a unit with arbitrary number of active threads
template <typename T> class counter_barrier_impl {
public:
  static void reset_private(kmp_int32 num_active,
                            kmp_hier_private_bdata_t *tdata);
  static void reset_shared(kmp_int32 num_active,
                           kmp_hier_shared_bdata_t<T> *bdata);
  static void barrier(kmp_int32 id, kmp_hier_shared_bdata_t<T> *bdata,
                      kmp_hier_private_bdata_t *tdata);
};

template <typename T>
void counter_barrier_impl<T>::reset_private(kmp_int32 num_active,
                                            kmp_hier_private_bdata_t *tdata) {
  tdata->num_active = num_active;
  tdata->index = 0;
  tdata->wait_val[0] = tdata->wait_val[1] = (kmp_uint64)num_active;
}
template <typename T>
void counter_barrier_impl<T>::reset_shared(kmp_int32 num_active,
                                           kmp_hier_shared_bdata_t<T> *bdata) {
  bdata->val[0] = bdata->val[1] = 0LL;
  bdata->status[0] = bdata->status[1] = 0LL;
}
template <typename T>
void counter_barrier_impl<T>::barrier(kmp_int32 id,
                                      kmp_hier_shared_bdata_t<T> *bdata,
                                      kmp_hier_private_bdata_t *tdata) {
  volatile kmp_int64 *val;
  kmp_uint64 current_index = tdata->index;
  kmp_uint64 next_index = 1 - current_index;
  kmp_uint64 current_wait_value = tdata->wait_val[current_index];
  kmp_uint64 next_wait_value = current_wait_value + tdata->num_active;

  KD_TRACE(10, ("counter_barrier_impl::barrier(): T#%d current_index:%llu "
                "next_index:%llu curr_wait:%llu next_wait:%llu\n",
                __kmp_get_gtid(), current_index, next_index, current_wait_value,
                next_wait_value));
  val = RCAST(volatile kmp_int64 *, &(bdata->val[current_index]));
  KMP_TEST_THEN_INC64(val);
  __kmp_wait<kmp_uint64>(&(bdata->val[current_index]), current_wait_value,
                         __kmp_ge<kmp_uint64> USE_ITT_BUILD_ARG(NULL));
  tdata->wait_val[current_index] = next_wait_value;
  tdata->index = next_index;
}

// Data associated with topology unit within a layer
// For example, one kmp_hier_top_unit_t corresponds to one L1 cache
template <typename T> struct kmp_hier_top_unit_t {
  typedef typename traits_t<T>::signed_t ST;
  typedef typename traits_t<T>::unsigned_t UT;
  kmp_int32 active; // number of topology units that communicate with this unit
  // chunk information (lower/upper bound, stride, etc.)
  dispatch_private_info_template<T> hier_pr;
  kmp_hier_top_unit_t<T> *hier_parent; // pointer to parent unit
  kmp_hier_shared_bdata_t<T> hier_barrier; // shared barrier data for this unit

  kmp_int32 get_hier_id() const { return hier_pr.hier_id; }
  void reset_shared_barrier() {
    KMP_DEBUG_ASSERT(active > 0);
    if (active == 1)
      return;
    hier_barrier.zero();
    if (active >= 2 && active <= 8) {
      core_barrier_impl<T>::reset_shared(active, &hier_barrier);
    } else {
      counter_barrier_impl<T>::reset_shared(active, &hier_barrier);
    }
  }
  void reset_private_barrier(kmp_hier_private_bdata_t *tdata) {
    KMP_DEBUG_ASSERT(tdata);
    KMP_DEBUG_ASSERT(active > 0);
    if (active == 1)
      return;
    if (active >= 2 && active <= 8) {
      core_barrier_impl<T>::reset_private(active, tdata);
    } else {
      counter_barrier_impl<T>::reset_private(active, tdata);
    }
  }
  void barrier(kmp_int32 id, kmp_hier_private_bdata_t *tdata) {
    KMP_DEBUG_ASSERT(tdata);
    KMP_DEBUG_ASSERT(active > 0);
    KMP_DEBUG_ASSERT(id >= 0 && id < active);
    if (active == 1) {
      tdata->index = 1 - tdata->index;
      return;
    }
    if (active >= 2 && active <= 8) {
      core_barrier_impl<T>::barrier(id, &hier_barrier, tdata);
    } else {
      counter_barrier_impl<T>::barrier(id, &hier_barrier, tdata);
    }
  }

  kmp_int32 get_next_status(kmp_uint64 index) const {
    return hier_barrier.get_next_status(index);
  }
  T get_next_lb(kmp_uint64 index) const {
    return hier_barrier.get_next_lb(index);
  }
  T get_next_ub(kmp_uint64 index) const {
    return hier_barrier.get_next_ub(index);
  }
  ST get_next_st(kmp_uint64 index) const {
    return hier_barrier.get_next_st(index);
  }
  dispatch_shared_info_template<T> volatile *get_next_sh(kmp_uint64 index) {
    return hier_barrier.get_next_sh(index);
  }

  kmp_int32 get_curr_status(kmp_uint64 index) const {
    return hier_barrier.get_curr_status(index);
  }
  T get_curr_lb(kmp_uint64 index) const {
    return hier_barrier.get_curr_lb(index);
  }
  T get_curr_ub(kmp_uint64 index) const {
    return hier_barrier.get_curr_ub(index);
  }
  ST get_curr_st(kmp_uint64 index) const {
    return hier_barrier.get_curr_st(index);
  }
  dispatch_shared_info_template<T> volatile *get_curr_sh(kmp_uint64 index) {
    return hier_barrier.get_curr_sh(index);
  }

  void set_next_hand_thread(T lb, T ub, ST st, kmp_int32 status,
                            kmp_uint64 index) {
    hier_barrier.set_next_hand_thread(lb, ub, st, status, index);
  }
  void set_next(T lb, T ub, ST st, kmp_int32 status, kmp_uint64 index) {
    hier_barrier.set_next(lb, ub, st, status, index);
  }
  dispatch_private_info_template<T> *get_my_pr() { return &hier_pr; }
  kmp_hier_top_unit_t<T> *get_parent() { return hier_parent; }
  dispatch_private_info_template<T> *get_parent_pr() {
    return &(hier_parent->hier_pr);
  }

  kmp_int32 is_active() const { return active; }
  kmp_int32 get_num_active() const { return active; }
#ifdef KMP_DEBUG
  void print() {
    KD_TRACE(
        10,
        ("    kmp_hier_top_unit_t: active:%d pr:%p lb:%d ub:%d st:%d tc:%d\n",
         active, &hier_pr, hier_pr.u.p.lb, hier_pr.u.p.ub, hier_pr.u.p.st,
         hier_pr.u.p.tc));
  }
#endif
};

// Information regarding a single layer within the scheduling hierarchy
template <typename T> struct kmp_hier_layer_info_t {
  int num_active; // number of threads active in this level
  kmp_hier_layer_e type; // LAYER_L1, LAYER_L2, etc.
  enum sched_type sched; // static, dynamic, guided, etc.
  typename traits_t<T>::signed_t chunk; // chunk size associated with schedule
  int length; // length of the kmp_hier_top_unit_t array

#ifdef KMP_DEBUG
  // Print this layer's information
  void print() {
    const char *t = __kmp_get_hier_str(type);
    KD_TRACE(
        10,
        ("    kmp_hier_layer_info_t: num_active:%d type:%s sched:%d chunk:%d "
         "length:%d\n",
         num_active, t, sched, chunk, length));
  }
#endif
};

/*
 * Structure to implement entire hierarchy
 *
 * The hierarchy is kept as an array of arrays to represent the different
 * layers.  Layer 0 is the lowest layer to layer num_layers - 1 which is the
 * highest layer.
 * Example:
 * [ 2 ] -> [ L3 | L3 ]
 * [ 1 ] -> [ L2 | L2 | L2 | L2 ]
 * [ 0 ] -> [ L1 | L1 | L1 | L1 | L1 | L1 | L1 | L1 ]
 * There is also an array of layer_info_t which has information regarding
 * each layer
 */
template <typename T> struct kmp_hier_t {
public:
  typedef typename traits_t<T>::unsigned_t UT;
  typedef typename traits_t<T>::signed_t ST;

private:
  int next_recurse(ident_t *loc, int gtid, kmp_hier_top_unit_t<T> *current,
                   kmp_int32 *p_last, T *p_lb, T *p_ub, ST *p_st,
                   kmp_int32 previous_id, int hier_level) {
    int status;
    kmp_info_t *th = __kmp_threads[gtid];
    auto parent = current->get_parent();
    bool last_layer = (hier_level == get_num_layers() - 1);
    KMP_DEBUG_ASSERT(th);
    kmp_hier_private_bdata_t *tdata = &(th->th.th_hier_bar_data[hier_level]);
    KMP_DEBUG_ASSERT(current);
    KMP_DEBUG_ASSERT(hier_level >= 0);
    KMP_DEBUG_ASSERT(hier_level < get_num_layers());
    KMP_DEBUG_ASSERT(tdata);
    KMP_DEBUG_ASSERT(parent || last_layer);

    KD_TRACE(
        1, ("kmp_hier_t.next_recurse(): T#%d (%d) called\n", gtid, hier_level));

    T hier_id = (T)current->get_hier_id();
    // Attempt to grab next iteration range for this level
    if (previous_id == 0) {
      KD_TRACE(1, ("kmp_hier_t.next_recurse(): T#%d (%d) is master of unit\n",
                   gtid, hier_level));
      kmp_int32 contains_last;
      T my_lb, my_ub;
      ST my_st;
      T nproc;
      dispatch_shared_info_template<T> volatile *my_sh;
      dispatch_private_info_template<T> *my_pr;
      if (last_layer) {
        // last layer below the very top uses the single shared buffer
        // from the team struct.
        KD_TRACE(10,
                 ("kmp_hier_t.next_recurse(): T#%d (%d) using top level sh\n",
                  gtid, hier_level));
        my_sh = reinterpret_cast<dispatch_shared_info_template<T> volatile *>(
            th->th.th_dispatch->th_dispatch_sh_current);
        nproc = (T)get_top_level_nproc();
      } else {
        // middle layers use the shared buffer inside the kmp_hier_top_unit_t
        // structure
        KD_TRACE(10, ("kmp_hier_t.next_recurse(): T#%d (%d) using hier sh\n",
                      gtid, hier_level));
        my_sh =
            parent->get_curr_sh(th->th.th_hier_bar_data[hier_level + 1].index);
        nproc = (T)parent->get_num_active();
      }
      my_pr = current->get_my_pr();
      KMP_DEBUG_ASSERT(my_sh);
      KMP_DEBUG_ASSERT(my_pr);
      enum sched_type schedule = get_sched(hier_level);
      ST chunk = (ST)get_chunk(hier_level);
      status = __kmp_dispatch_next_algorithm<T>(gtid, my_pr, my_sh,
                                                &contains_last, &my_lb, &my_ub,
                                                &my_st, nproc, hier_id);
      KD_TRACE(
          10,
          ("kmp_hier_t.next_recurse(): T#%d (%d) next_pr_sh() returned %d\n",
           gtid, hier_level, status));
      // When no iterations are found (status == 0) and this is not the last
      // layer, attempt to go up the hierarchy for more iterations
      if (status == 0 && !last_layer) {
        status = next_recurse(loc, gtid, parent, &contains_last, &my_lb, &my_ub,
                              &my_st, hier_id, hier_level + 1);
        KD_TRACE(
            10,
            ("kmp_hier_t.next_recurse(): T#%d (%d) hier_next() returned %d\n",
             gtid, hier_level, status));
        if (status == 1) {
          kmp_hier_private_bdata_t *upper_tdata =
              &(th->th.th_hier_bar_data[hier_level + 1]);
          my_sh = parent->get_curr_sh(upper_tdata->index);
          KD_TRACE(10, ("kmp_hier_t.next_recurse(): T#%d (%d) about to init\n",
                        gtid, hier_level));
          __kmp_dispatch_init_algorithm(loc, gtid, my_pr, schedule,
                                        parent->get_curr_lb(upper_tdata->index),
                                        parent->get_curr_ub(upper_tdata->index),
                                        parent->get_curr_st(upper_tdata->index),
#if USE_ITT_BUILD
                                        NULL,
#endif
                                        chunk, nproc, hier_id);
          status = __kmp_dispatch_next_algorithm<T>(
              gtid, my_pr, my_sh, &contains_last, &my_lb, &my_ub, &my_st, nproc,
              hier_id);
          if (!status) {
            KD_TRACE(10, ("kmp_hier_t.next_recurse(): T#%d (%d) status not 1 "
                          "setting to 2!\n",
                          gtid, hier_level));
            status = 2;
          }
        }
      }
      current->set_next(my_lb, my_ub, my_st, status, tdata->index);
      // Propagate whether a unit holds the actual global last iteration
      // The contains_last attribute is sent downwards from the top to the
      // bottom of the hierarchy via the contains_last flag inside the
      // private dispatch buffers in the hierarchy's middle layers
      if (contains_last) {
        // If the next_algorithm() method returns 1 for p_last and it is the
        // last layer or our parent contains the last serial chunk, then the
        // chunk must contain the last serial iteration.
        if (last_layer || parent->hier_pr.flags.contains_last) {
          KD_TRACE(10, ("kmp_hier_t.next_recurse(): T#%d (%d) Setting this pr "
                        "to contain last.\n",
                        gtid, hier_level));
          current->hier_pr.flags.contains_last = contains_last;
        }
        if (!current->hier_pr.flags.contains_last)
          contains_last = FALSE;
      }
      if (p_last)
        *p_last = contains_last;
    } // if master thread of this unit
    if (hier_level > 0 || !__kmp_dispatch_hand_threading) {
      KD_TRACE(10,
               ("kmp_hier_t.next_recurse(): T#%d (%d) going into barrier.\n",
                gtid, hier_level));
      current->barrier(previous_id, tdata);
      KD_TRACE(10,
               ("kmp_hier_t.next_recurse(): T#%d (%d) released and exit %d\n",
                gtid, hier_level, current->get_curr_status(tdata->index)));
    } else {
      KMP_DEBUG_ASSERT(previous_id == 0);
      return status;
    }
    return current->get_curr_status(tdata->index);
  }

public:
  int top_level_nproc;
  int num_layers;
  bool valid;
  int type_size;
  kmp_hier_layer_info_t<T> *info;
  kmp_hier_top_unit_t<T> **layers;
  // Deallocate all memory from this hierarchy
  void deallocate() {
    for (int i = 0; i < num_layers; ++i)
      if (layers[i] != NULL) {
        __kmp_free(layers[i]);
      }
    if (layers != NULL) {
      __kmp_free(layers);
      layers = NULL;
    }
    if (info != NULL) {
      __kmp_free(info);
      info = NULL;
    }
    num_layers = 0;
    valid = false;
  }
  // Returns true if reallocation is needed else false
  bool need_to_reallocate(int n, const kmp_hier_layer_e *new_layers,
                          const enum sched_type *new_scheds,
                          const ST *new_chunks) const {
    if (!valid || layers == NULL || info == NULL ||
        traits_t<T>::type_size != type_size || n != num_layers)
      return true;
    for (int i = 0; i < n; ++i) {
      if (info[i].type != new_layers[i])
        return true;
      if (info[i].sched != new_scheds[i])
        return true;
      if (info[i].chunk != new_chunks[i])
        return true;
    }
    return false;
  }
  // A single thread should call this function while the other threads wait
  // create a new scheduling hierarchy consisting of new_layers, new_scheds
  // and new_chunks.  These should come pre-sorted according to
  // kmp_hier_layer_e value.  This function will try to avoid reallocation
  // if it can
  void allocate_hier(int n, const kmp_hier_layer_e *new_layers,
                     const enum sched_type *new_scheds, const ST *new_chunks) {
    top_level_nproc = 0;
    if (!need_to_reallocate(n, new_layers, new_scheds, new_chunks)) {
      KD_TRACE(
          10,
          ("kmp_hier_t<T>::allocate_hier: T#0 do not need to reallocate\n"));
      for (int i = 0; i < n; ++i) {
        info[i].num_active = 0;
        for (int j = 0; j < get_length(i); ++j)
          layers[i][j].active = 0;
      }
      return;
    }
    KD_TRACE(10, ("kmp_hier_t<T>::allocate_hier: T#0 full alloc\n"));
    deallocate();
    type_size = traits_t<T>::type_size;
    num_layers = n;
    info = (kmp_hier_layer_info_t<T> *)__kmp_allocate(
        sizeof(kmp_hier_layer_info_t<T>) * n);
    layers = (kmp_hier_top_unit_t<T> **)__kmp_allocate(
        sizeof(kmp_hier_top_unit_t<T> *) * n);
    for (int i = 0; i < n; ++i) {
      int max = 0;
      kmp_hier_layer_e layer = new_layers[i];
      info[i].num_active = 0;
      info[i].type = layer;
      info[i].sched = new_scheds[i];
      info[i].chunk = new_chunks[i];
      max = __kmp_hier_max_units[layer + 1];
      if (max == 0) {
        valid = false;
        KMP_WARNING(HierSchedInvalid, __kmp_get_hier_str(layer));
        deallocate();
        return;
      }
      info[i].length = max;
      layers[i] = (kmp_hier_top_unit_t<T> *)__kmp_allocate(
          sizeof(kmp_hier_top_unit_t<T>) * max);
      for (int j = 0; j < max; ++j) {
        layers[i][j].active = 0;
        layers[i][j].hier_pr.flags.use_hier = TRUE;
      }
    }
    valid = true;
  }
  // loc - source file location
  // gtid - global thread identifier
  // pr - this thread's private dispatch buffer (corresponding with gtid)
  // p_last (return value) - pointer to flag indicating this set of iterations
  // contains last
  //          iteration
  // p_lb (return value) - lower bound for this chunk of iterations
  // p_ub (return value) - upper bound for this chunk of iterations
  // p_st (return value) - stride for this chunk of iterations
  //
  // Returns 1 if there are more iterations to perform, 0 otherwise
  int next(ident_t *loc, int gtid, dispatch_private_info_template<T> *pr,
           kmp_int32 *p_last, T *p_lb, T *p_ub, ST *p_st) {
    int status;
    kmp_int32 contains_last = 0;
    kmp_info_t *th = __kmp_threads[gtid];
    kmp_hier_private_bdata_t *tdata = &(th->th.th_hier_bar_data[0]);
    auto parent = pr->get_parent();
    KMP_DEBUG_ASSERT(parent);
    KMP_DEBUG_ASSERT(th);
    KMP_DEBUG_ASSERT(tdata);
    KMP_DEBUG_ASSERT(parent);
    T nproc = (T)parent->get_num_active();
    T unit_id = (T)pr->get_hier_id();
    KD_TRACE(
        10,
        ("kmp_hier_t.next(): T#%d THREAD LEVEL nproc:%d unit_id:%d called\n",
         gtid, nproc, unit_id));
    // Handthreading implementation
    // Each iteration is performed by all threads on last unit (typically
    // cores/tiles)
    // e.g., threads 0,1,2,3 all execute iteration 0
    //       threads 0,1,2,3 all execute iteration 1
    //       threads 4,5,6,7 all execute iteration 2
    //       threads 4,5,6,7 all execute iteration 3
    //       ... etc.
    if (__kmp_dispatch_hand_threading) {
      KD_TRACE(10,
               ("kmp_hier_t.next(): T#%d THREAD LEVEL using hand threading\n",
                gtid));
      if (unit_id == 0) {
        // For hand threading, the sh buffer on the lowest level is only ever
        // modified and read by the master thread on that level.  Because of
        // this, we can always use the first sh buffer.
        auto sh = &(parent->hier_barrier.sh[0]);
        KMP_DEBUG_ASSERT(sh);
        status = __kmp_dispatch_next_algorithm<T>(
            gtid, pr, sh, &contains_last, p_lb, p_ub, p_st, nproc, unit_id);
        if (!status) {
          bool done = false;
          while (!done) {
            done = true;
            status = next_recurse(loc, gtid, parent, &contains_last, p_lb, p_ub,
                                  p_st, unit_id, 0);
            if (status == 1) {
              __kmp_dispatch_init_algorithm(loc, gtid, pr, pr->schedule,
                                            parent->get_next_lb(tdata->index),
                                            parent->get_next_ub(tdata->index),
                                            parent->get_next_st(tdata->index),
#if USE_ITT_BUILD
                                            NULL,
#endif
                                            pr->u.p.parm1, nproc, unit_id);
              sh->u.s.iteration = 0;
              status = __kmp_dispatch_next_algorithm<T>(
                  gtid, pr, sh, &contains_last, p_lb, p_ub, p_st, nproc,
                  unit_id);
              if (!status) {
                KD_TRACE(10,
                         ("kmp_hier_t.next(): T#%d THREAD LEVEL status == 0 "
                          "after next_pr_sh()"
                          "trying again.\n",
                          gtid));
                done = false;
              }
            } else if (status == 2) {
              KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL status == 2 "
                            "trying again.\n",
                            gtid));
              done = false;
            }
          }
        }
        parent->set_next_hand_thread(*p_lb, *p_ub, *p_st, status, tdata->index);
      } // if master thread of lowest unit level
      parent->barrier(pr->get_hier_id(), tdata);
      if (unit_id != 0) {
        *p_lb = parent->get_curr_lb(tdata->index);
        *p_ub = parent->get_curr_ub(tdata->index);
        *p_st = parent->get_curr_st(tdata->index);
        status = parent->get_curr_status(tdata->index);
      }
    } else {
      // Normal implementation
      // Each thread grabs an iteration chunk and executes it (no cooperation)
      auto sh = parent->get_curr_sh(tdata->index);
      KMP_DEBUG_ASSERT(sh);
      status = __kmp_dispatch_next_algorithm<T>(
          gtid, pr, sh, &contains_last, p_lb, p_ub, p_st, nproc, unit_id);
      KD_TRACE(10,
               ("kmp_hier_t.next(): T#%d THREAD LEVEL next_algorithm status:%d "
                "contains_last:%d p_lb:%d p_ub:%d p_st:%d\n",
                gtid, status, contains_last, *p_lb, *p_ub, *p_st));
      if (!status) {
        bool done = false;
        while (!done) {
          done = true;
          status = next_recurse(loc, gtid, parent, &contains_last, p_lb, p_ub,
                                p_st, unit_id, 0);
          if (status == 1) {
            sh = parent->get_curr_sh(tdata->index);
            __kmp_dispatch_init_algorithm(loc, gtid, pr, pr->schedule,
                                          parent->get_curr_lb(tdata->index),
                                          parent->get_curr_ub(tdata->index),
                                          parent->get_curr_st(tdata->index),
#if USE_ITT_BUILD
                                          NULL,
#endif
                                          pr->u.p.parm1, nproc, unit_id);
            status = __kmp_dispatch_next_algorithm<T>(
                gtid, pr, sh, &contains_last, p_lb, p_ub, p_st, nproc, unit_id);
            if (!status) {
              KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL status == 0 "
                            "after next_pr_sh()"
                            "trying again.\n",
                            gtid));
              done = false;
            }
          } else if (status == 2) {
            KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL status == 2 "
                          "trying again.\n",
                          gtid));
            done = false;
          }
        }
      }
    }
    if (contains_last && !parent->hier_pr.flags.contains_last) {
      KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL resetting "
                    "contains_last to FALSE\n",
                    gtid));
      contains_last = FALSE;
    }
    if (p_last)
      *p_last = contains_last;
    KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL exit status %d\n", gtid,
                  status));
    return status;
  }
  // These functions probe the layer info structure
  // Returns the type of topology unit given level
  kmp_hier_layer_e get_type(int level) const {
    KMP_DEBUG_ASSERT(level >= 0);
    KMP_DEBUG_ASSERT(level < num_layers);
    return info[level].type;
  }
  // Returns the schedule type at given level
  enum sched_type get_sched(int level) const {
    KMP_DEBUG_ASSERT(level >= 0);
    KMP_DEBUG_ASSERT(level < num_layers);
    return info[level].sched;
  }
  // Returns the chunk size at given level
  ST get_chunk(int level) const {
    KMP_DEBUG_ASSERT(level >= 0);
    KMP_DEBUG_ASSERT(level < num_layers);
    return info[level].chunk;
  }
  // Returns the number of active threads at given level
  int get_num_active(int level) const {
    KMP_DEBUG_ASSERT(level >= 0);
    KMP_DEBUG_ASSERT(level < num_layers);
    return info[level].num_active;
  }
  // Returns the length of topology unit array at given level
  int get_length(int level) const {
    KMP_DEBUG_ASSERT(level >= 0);
    KMP_DEBUG_ASSERT(level < num_layers);
    return info[level].length;
  }
  // Returns the topology unit given the level and index
  kmp_hier_top_unit_t<T> *get_unit(int level, int index) {
    KMP_DEBUG_ASSERT(level >= 0);
    KMP_DEBUG_ASSERT(level < num_layers);
    KMP_DEBUG_ASSERT(index >= 0);
    KMP_DEBUG_ASSERT(index < get_length(level));
    return &(layers[level][index]);
  }
  // Returns the number of layers in the hierarchy
  int get_num_layers() const { return num_layers; }
  // Returns the number of threads in the top layer
  // This is necessary because we don't store a topology unit as
  // the very top level and the scheduling algorithms need this information
  int get_top_level_nproc() const { return top_level_nproc; }
  // Return whether this hierarchy is valid or not
  bool is_valid() const { return valid; }
#ifdef KMP_DEBUG
  // Print the hierarchy
  void print() {
    KD_TRACE(10, ("kmp_hier_t:\n"));
    for (int i = num_layers - 1; i >= 0; --i) {
      KD_TRACE(10, ("Info[%d] = ", i));
      info[i].print();
    }
    for (int i = num_layers - 1; i >= 0; --i) {
      KD_TRACE(10, ("Layer[%d] =\n", i));
      for (int j = 0; j < info[i].length; ++j) {
        layers[i][j].print();
      }
    }
  }
#endif
};

template <typename T>
void __kmp_dispatch_init_hierarchy(ident_t *loc, int n,
                                   kmp_hier_layer_e *new_layers,
                                   enum sched_type *new_scheds,
                                   typename traits_t<T>::signed_t *new_chunks,
                                   T lb, T ub,
                                   typename traits_t<T>::signed_t st) {
  int tid, gtid, num_hw_threads, num_threads_per_layer1, active;
  int my_buffer_index;
  kmp_info_t *th;
  kmp_team_t *team;
  dispatch_private_info_template<T> *pr;
  dispatch_shared_info_template<T> volatile *sh;
  gtid = __kmp_entry_gtid();
  tid = __kmp_tid_from_gtid(gtid);
#ifdef KMP_DEBUG
  KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d called: %d layer(s)\n",
                gtid, n));
  for (int i = 0; i < n; ++i) {
    const char *layer = __kmp_get_hier_str(new_layers[i]);
    KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d: new_layers[%d] = %s, "
                  "new_scheds[%d] = %d, new_chunks[%d] = %u\n",
                  gtid, i, layer, i, (int)new_scheds[i], i, new_chunks[i]));
  }
#endif // KMP_DEBUG
  KMP_DEBUG_ASSERT(n > 0);
  KMP_DEBUG_ASSERT(new_layers);
  KMP_DEBUG_ASSERT(new_scheds);
  KMP_DEBUG_ASSERT(new_chunks);
  if (!TCR_4(__kmp_init_parallel))
    __kmp_parallel_initialize();
  __kmp_resume_if_soft_paused();

  th = __kmp_threads[gtid];
  team = th->th.th_team;
  active = !team->t.t_serialized;
  th->th.th_ident = loc;
  num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
  KMP_DEBUG_ASSERT(th->th.th_dispatch ==
                   &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);
  my_buffer_index = th->th.th_dispatch->th_disp_index;
  pr = reinterpret_cast<dispatch_private_info_template<T> *>(
      &th->th.th_dispatch
           ->th_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
  sh = reinterpret_cast<dispatch_shared_info_template<T> volatile *>(
      &team->t.t_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
  if (!active) {
    KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d not active parallel. "
                  "Using normal dispatch functions.\n",
                  gtid));
    KMP_DEBUG_ASSERT(pr);
    pr->flags.use_hier = FALSE;
    pr->flags.contains_last = FALSE;
    return;
  }
  KMP_DEBUG_ASSERT(pr);
  KMP_DEBUG_ASSERT(sh);
  pr->flags.use_hier = TRUE;
  pr->u.p.tc = 0;
  // Have master allocate the hierarchy
  if (__kmp_tid_from_gtid(gtid) == 0) {
    KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d pr:%p sh:%p allocating "
                  "hierarchy\n",
                  gtid, pr, sh));
    if (sh->hier == NULL) {
      sh->hier = (kmp_hier_t<T> *)__kmp_allocate(sizeof(kmp_hier_t<T>));
    }
    sh->hier->allocate_hier(n, new_layers, new_scheds, new_chunks);
    sh->u.s.iteration = 0;
  }
  __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
  // Check to make sure the hierarchy is valid
  kmp_hier_t<T> *hier = sh->hier;
  if (!sh->hier->is_valid()) {
    pr->flags.use_hier = FALSE;
    return;
  }
  // Have threads allocate their thread-private barrier data if it hasn't
  // already been allocated
  if (th->th.th_hier_bar_data == NULL) {
    th->th.th_hier_bar_data = (kmp_hier_private_bdata_t *)__kmp_allocate(
        sizeof(kmp_hier_private_bdata_t) * kmp_hier_layer_e::LAYER_LAST);
  }
  // Have threads "register" themselves by modifiying the active count for each
  // level they are involved in. The active count will act as nthreads for that
  // level regarding the scheduling algorithms
  for (int i = 0; i < n; ++i) {
    int index = __kmp_dispatch_get_index(tid, hier->get_type(i));
    kmp_hier_top_unit_t<T> *my_unit = hier->get_unit(i, index);
    // Setup the thread's private dispatch buffer's hierarchy pointers
    if (i == 0)
      pr->hier_parent = my_unit;
    // If this unit is already active, then increment active count and wait
    if (my_unit->is_active()) {
      KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d my_unit (%p) "
                    "is already active (%d)\n",
                    gtid, my_unit, my_unit->active));
      KMP_TEST_THEN_INC32(&(my_unit->active));
      break;
    }
    // Flag that this unit is active
    if (KMP_COMPARE_AND_STORE_ACQ32(&(my_unit->active), 0, 1)) {
      // Do not setup parent pointer for top level unit since it has no parent
      if (i < n - 1) {
        // Setup middle layer pointers to parents
        my_unit->get_my_pr()->hier_id =
            index % __kmp_dispatch_get_t1_per_t2(hier->get_type(i),
                                                 hier->get_type(i + 1));
        int parent_index = __kmp_dispatch_get_index(tid, hier->get_type(i + 1));
        my_unit->hier_parent = hier->get_unit(i + 1, parent_index);
      } else {
        // Setup top layer information (no parent pointers are set)
        my_unit->get_my_pr()->hier_id =
            index % __kmp_dispatch_get_t1_per_t2(hier->get_type(i),
                                                 kmp_hier_layer_e::LAYER_LOOP);
        KMP_TEST_THEN_INC32(&(hier->top_level_nproc));
        my_unit->hier_parent = nullptr;
      }
      // Set trip count to 0 so that next() operation will initially climb up
      // the hierarchy to get more iterations (early exit in next() for tc == 0)
      my_unit->get_my_pr()->u.p.tc = 0;
      // Increment this layer's number of active units
      KMP_TEST_THEN_INC32(&(hier->info[i].num_active));
      KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d my_unit (%p) "
                    "incrementing num_active\n",
                    gtid, my_unit));
    } else {
      KMP_TEST_THEN_INC32(&(my_unit->active));
      break;
    }
  }
  // Set this thread's id
  num_threads_per_layer1 = __kmp_dispatch_get_t1_per_t2(
      kmp_hier_layer_e::LAYER_THREAD, hier->get_type(0));
  pr->hier_id = tid % num_threads_per_layer1;
  // For oversubscribed threads, increment their index within the lowest unit
  // This is done to prevent having two or more threads with id 0, id 1, etc.
  if (tid >= num_hw_threads)
    pr->hier_id += ((tid / num_hw_threads) * num_threads_per_layer1);
  KD_TRACE(
      10, ("__kmp_dispatch_init_hierarchy: T#%d setting lowest hier_id to %d\n",
           gtid, pr->hier_id));

  pr->flags.contains_last = FALSE;
  __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);

  // Now that the number of active threads at each level is determined,
  // the barrier data for each unit can be initialized and the last layer's
  // loop information can be initialized.
  int prev_id = pr->get_hier_id();
  for (int i = 0; i < n; ++i) {
    if (prev_id != 0)
      break;
    int index = __kmp_dispatch_get_index(tid, hier->get_type(i));
    kmp_hier_top_unit_t<T> *my_unit = hier->get_unit(i, index);
    // Only master threads of this unit within the hierarchy do initialization
    KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d (%d) prev_id is 0\n",
                  gtid, i));
    my_unit->reset_shared_barrier();
    my_unit->hier_pr.flags.contains_last = FALSE;
    // Last layer, initialize the private buffers with entire loop information
    // Now the next next_algorithim() call will get the first chunk of
    // iterations properly
    if (i == n - 1) {
      __kmp_dispatch_init_algorithm<T>(
          loc, gtid, my_unit->get_my_pr(), hier->get_sched(i), lb, ub, st,
#if USE_ITT_BUILD
          NULL,
#endif
          hier->get_chunk(i), hier->get_num_active(i), my_unit->get_hier_id());
    }
    prev_id = my_unit->get_hier_id();
  }
  // Initialize each layer of the thread's private barrier data
  kmp_hier_top_unit_t<T> *unit = pr->hier_parent;
  for (int i = 0; i < n && unit; ++i, unit = unit->get_parent()) {
    kmp_hier_private_bdata_t *tdata = &(th->th.th_hier_bar_data[i]);
    unit->reset_private_barrier(tdata);
  }
  __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);

#ifdef KMP_DEBUG
  if (__kmp_tid_from_gtid(gtid) == 0) {
    for (int i = 0; i < n; ++i) {
      KD_TRACE(10,
               ("__kmp_dispatch_init_hierarchy: T#%d active count[%d] = %d\n",
                gtid, i, hier->get_num_active(i)));
    }
    hier->print();
  }
  __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
#endif // KMP_DEBUG
}
#endif