reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
/*
 * kmp_affinity.h -- header for affinity management
 */

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef KMP_AFFINITY_H
#define KMP_AFFINITY_H

#include "kmp.h"
#include "kmp_os.h"

#if KMP_AFFINITY_SUPPORTED
#if KMP_USE_HWLOC
class KMPHwlocAffinity : public KMPAffinity {
public:
  class Mask : public KMPAffinity::Mask {
    hwloc_cpuset_t mask;

  public:
    Mask() {
      mask = hwloc_bitmap_alloc();
      this->zero();
    }
    ~Mask() { hwloc_bitmap_free(mask); }
    void set(int i) override { hwloc_bitmap_set(mask, i); }
    bool is_set(int i) const override { return hwloc_bitmap_isset(mask, i); }
    void clear(int i) override { hwloc_bitmap_clr(mask, i); }
    void zero() override { hwloc_bitmap_zero(mask); }
    void copy(const KMPAffinity::Mask *src) override {
      const Mask *convert = static_cast<const Mask *>(src);
      hwloc_bitmap_copy(mask, convert->mask);
    }
    void bitwise_and(const KMPAffinity::Mask *rhs) override {
      const Mask *convert = static_cast<const Mask *>(rhs);
      hwloc_bitmap_and(mask, mask, convert->mask);
    }
    void bitwise_or(const KMPAffinity::Mask *rhs) override {
      const Mask *convert = static_cast<const Mask *>(rhs);
      hwloc_bitmap_or(mask, mask, convert->mask);
    }
    void bitwise_not() override { hwloc_bitmap_not(mask, mask); }
    int begin() const override { return hwloc_bitmap_first(mask); }
    int end() const override { return -1; }
    int next(int previous) const override {
      return hwloc_bitmap_next(mask, previous);
    }
    int get_system_affinity(bool abort_on_error) override {
      KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
                  "Illegal get affinity operation when not capable");
      int retval =
          hwloc_get_cpubind(__kmp_hwloc_topology, mask, HWLOC_CPUBIND_THREAD);
      if (retval >= 0) {
        return 0;
      }
      int error = errno;
      if (abort_on_error) {
        __kmp_fatal(KMP_MSG(FatalSysError), KMP_ERR(error), __kmp_msg_null);
      }
      return error;
    }
    int set_system_affinity(bool abort_on_error) const override {
      KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
                  "Illegal get affinity operation when not capable");
      int retval =
          hwloc_set_cpubind(__kmp_hwloc_topology, mask, HWLOC_CPUBIND_THREAD);
      if (retval >= 0) {
        return 0;
      }
      int error = errno;
      if (abort_on_error) {
        __kmp_fatal(KMP_MSG(FatalSysError), KMP_ERR(error), __kmp_msg_null);
      }
      return error;
    }
    int get_proc_group() const override {
      int group = -1;
#if KMP_OS_WINDOWS
      if (__kmp_num_proc_groups == 1) {
        return 1;
      }
      for (int i = 0; i < __kmp_num_proc_groups; i++) {
        // On windows, the long type is always 32 bits
        unsigned long first_32_bits = hwloc_bitmap_to_ith_ulong(mask, i * 2);
        unsigned long second_32_bits =
            hwloc_bitmap_to_ith_ulong(mask, i * 2 + 1);
        if (first_32_bits == 0 && second_32_bits == 0) {
          continue;
        }
        if (group >= 0) {
          return -1;
        }
        group = i;
      }
#endif /* KMP_OS_WINDOWS */
      return group;
    }
  };
  void determine_capable(const char *var) override {
    const hwloc_topology_support *topology_support;
    if (__kmp_hwloc_topology == NULL) {
      if (hwloc_topology_init(&__kmp_hwloc_topology) < 0) {
        __kmp_hwloc_error = TRUE;
        if (__kmp_affinity_verbose)
          KMP_WARNING(AffHwlocErrorOccurred, var, "hwloc_topology_init()");
      }
      if (hwloc_topology_load(__kmp_hwloc_topology) < 0) {
        __kmp_hwloc_error = TRUE;
        if (__kmp_affinity_verbose)
          KMP_WARNING(AffHwlocErrorOccurred, var, "hwloc_topology_load()");
      }
    }
    topology_support = hwloc_topology_get_support(__kmp_hwloc_topology);
    // Is the system capable of setting/getting this thread's affinity?
    // Also, is topology discovery possible? (pu indicates ability to discover
    // processing units). And finally, were there no errors when calling any
    // hwloc_* API functions?
    if (topology_support && topology_support->cpubind->set_thisthread_cpubind &&
        topology_support->cpubind->get_thisthread_cpubind &&
        topology_support->discovery->pu && !__kmp_hwloc_error) {
      // enables affinity according to KMP_AFFINITY_CAPABLE() macro
      KMP_AFFINITY_ENABLE(TRUE);
    } else {
      // indicate that hwloc didn't work and disable affinity
      __kmp_hwloc_error = TRUE;
      KMP_AFFINITY_DISABLE();
    }
  }
  void bind_thread(int which) override {
    KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
                "Illegal set affinity operation when not capable");
    KMPAffinity::Mask *mask;
    KMP_CPU_ALLOC_ON_STACK(mask);
    KMP_CPU_ZERO(mask);
    KMP_CPU_SET(which, mask);
    __kmp_set_system_affinity(mask, TRUE);
    KMP_CPU_FREE_FROM_STACK(mask);
  }
  KMPAffinity::Mask *allocate_mask() override { return new Mask(); }
  void deallocate_mask(KMPAffinity::Mask *m) override { delete m; }
  KMPAffinity::Mask *allocate_mask_array(int num) override {
    return new Mask[num];
  }
  void deallocate_mask_array(KMPAffinity::Mask *array) override {
    Mask *hwloc_array = static_cast<Mask *>(array);
    delete[] hwloc_array;
  }
  KMPAffinity::Mask *index_mask_array(KMPAffinity::Mask *array,
                                      int index) override {
    Mask *hwloc_array = static_cast<Mask *>(array);
    return &(hwloc_array[index]);
  }
  api_type get_api_type() const override { return HWLOC; }
};
#endif /* KMP_USE_HWLOC */

#if KMP_OS_LINUX || KMP_OS_FREEBSD
#if KMP_OS_LINUX
/* On some of the older OS's that we build on, these constants aren't present
   in <asm/unistd.h> #included from <sys.syscall.h>. They must be the same on
   all systems of the same arch where they are defined, and they cannot change.
   stone forever. */
#include <sys/syscall.h>
#if KMP_ARCH_X86 || KMP_ARCH_ARM
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 241
#elif __NR_sched_setaffinity != 241
#error Wrong code for setaffinity system call.
#endif /* __NR_sched_setaffinity */
#ifndef __NR_sched_getaffinity
#define __NR_sched_getaffinity 242
#elif __NR_sched_getaffinity != 242
#error Wrong code for getaffinity system call.
#endif /* __NR_sched_getaffinity */
#elif KMP_ARCH_AARCH64
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 122
#elif __NR_sched_setaffinity != 122
#error Wrong code for setaffinity system call.
#endif /* __NR_sched_setaffinity */
#ifndef __NR_sched_getaffinity
#define __NR_sched_getaffinity 123
#elif __NR_sched_getaffinity != 123
#error Wrong code for getaffinity system call.
#endif /* __NR_sched_getaffinity */
#elif KMP_ARCH_X86_64
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 203
#elif __NR_sched_setaffinity != 203
#error Wrong code for setaffinity system call.
#endif /* __NR_sched_setaffinity */
#ifndef __NR_sched_getaffinity
#define __NR_sched_getaffinity 204
#elif __NR_sched_getaffinity != 204
#error Wrong code for getaffinity system call.
#endif /* __NR_sched_getaffinity */
#elif KMP_ARCH_PPC64
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 222
#elif __NR_sched_setaffinity != 222
#error Wrong code for setaffinity system call.
#endif /* __NR_sched_setaffinity */
#ifndef __NR_sched_getaffinity
#define __NR_sched_getaffinity 223
#elif __NR_sched_getaffinity != 223
#error Wrong code for getaffinity system call.
#endif /* __NR_sched_getaffinity */
#elif KMP_ARCH_MIPS
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 4239
#elif __NR_sched_setaffinity != 4239
#error Wrong code for setaffinity system call.
#endif /* __NR_sched_setaffinity */
#ifndef __NR_sched_getaffinity
#define __NR_sched_getaffinity 4240
#elif __NR_sched_getaffinity != 4240
#error Wrong code for getaffinity system call.
#endif /* __NR_sched_getaffinity */
#elif KMP_ARCH_MIPS64
#ifndef __NR_sched_setaffinity
#define __NR_sched_setaffinity 5195
#elif __NR_sched_setaffinity != 5195
#error Wrong code for setaffinity system call.
#endif /* __NR_sched_setaffinity */
#ifndef __NR_sched_getaffinity
#define __NR_sched_getaffinity 5196
#elif __NR_sched_getaffinity != 5196
#error Wrong code for getaffinity system call.
#endif /* __NR_sched_getaffinity */
#error Unknown or unsupported architecture
#endif /* KMP_ARCH_* */
#elif KMP_OS_FREEBSD
#include <pthread.h>
#include <pthread_np.h>
#endif
class KMPNativeAffinity : public KMPAffinity {
  class Mask : public KMPAffinity::Mask {
    typedef unsigned char mask_t;
    static const int BITS_PER_MASK_T = sizeof(mask_t) * CHAR_BIT;

  public:
    mask_t *mask;
    Mask() { mask = (mask_t *)__kmp_allocate(__kmp_affin_mask_size); }
    ~Mask() {
      if (mask)
        __kmp_free(mask);
    }
    void set(int i) override {
      mask[i / BITS_PER_MASK_T] |= ((mask_t)1 << (i % BITS_PER_MASK_T));
    }
    bool is_set(int i) const override {
      return (mask[i / BITS_PER_MASK_T] & ((mask_t)1 << (i % BITS_PER_MASK_T)));
    }
    void clear(int i) override {
      mask[i / BITS_PER_MASK_T] &= ~((mask_t)1 << (i % BITS_PER_MASK_T));
    }
    void zero() override {
      for (size_t i = 0; i < __kmp_affin_mask_size; ++i)
        mask[i] = 0;
    }
    void copy(const KMPAffinity::Mask *src) override {
      const Mask *convert = static_cast<const Mask *>(src);
      for (size_t i = 0; i < __kmp_affin_mask_size; ++i)
        mask[i] = convert->mask[i];
    }
    void bitwise_and(const KMPAffinity::Mask *rhs) override {
      const Mask *convert = static_cast<const Mask *>(rhs);
      for (size_t i = 0; i < __kmp_affin_mask_size; ++i)
        mask[i] &= convert->mask[i];
    }
    void bitwise_or(const KMPAffinity::Mask *rhs) override {
      const Mask *convert = static_cast<const Mask *>(rhs);
      for (size_t i = 0; i < __kmp_affin_mask_size; ++i)
        mask[i] |= convert->mask[i];
    }
    void bitwise_not() override {
      for (size_t i = 0; i < __kmp_affin_mask_size; ++i)
        mask[i] = ~(mask[i]);
    }
    int begin() const override {
      int retval = 0;
      while (retval < end() && !is_set(retval))
        ++retval;
      return retval;
    }
    int end() const override { return __kmp_affin_mask_size * BITS_PER_MASK_T; }
    int next(int previous) const override {
      int retval = previous + 1;
      while (retval < end() && !is_set(retval))
        ++retval;
      return retval;
    }
    int get_system_affinity(bool abort_on_error) override {
      KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
                  "Illegal get affinity operation when not capable");
#if KMP_OS_LINUX
      int retval =
          syscall(__NR_sched_getaffinity, 0, __kmp_affin_mask_size, mask);
#elif KMP_OS_FREEBSD
      int retval =
          pthread_getaffinity_np(pthread_self(), __kmp_affin_mask_size, reinterpret_cast<cpuset_t *>(mask));
#endif
      if (retval >= 0) {
        return 0;
      }
      int error = errno;
      if (abort_on_error) {
        __kmp_fatal(KMP_MSG(FatalSysError), KMP_ERR(error), __kmp_msg_null);
      }
      return error;
    }
    int set_system_affinity(bool abort_on_error) const override {
      KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
                  "Illegal get affinity operation when not capable");
#if KMP_OS_LINUX
      int retval =
          syscall(__NR_sched_setaffinity, 0, __kmp_affin_mask_size, mask);
#elif KMP_OS_FREEBSD
      int retval =
          pthread_setaffinity_np(pthread_self(), __kmp_affin_mask_size, reinterpret_cast<cpuset_t *>(mask));
#endif
      if (retval >= 0) {
        return 0;
      }
      int error = errno;
      if (abort_on_error) {
        __kmp_fatal(KMP_MSG(FatalSysError), KMP_ERR(error), __kmp_msg_null);
      }
      return error;
    }
  };
  void determine_capable(const char *env_var) override {
    __kmp_affinity_determine_capable(env_var);
  }
  void bind_thread(int which) override { __kmp_affinity_bind_thread(which); }
  KMPAffinity::Mask *allocate_mask() override {
    KMPNativeAffinity::Mask *retval = new Mask();
    return retval;
  }
  void deallocate_mask(KMPAffinity::Mask *m) override {
    KMPNativeAffinity::Mask *native_mask =
        static_cast<KMPNativeAffinity::Mask *>(m);
    delete native_mask;
  }
  KMPAffinity::Mask *allocate_mask_array(int num) override {
    return new Mask[num];
  }
  void deallocate_mask_array(KMPAffinity::Mask *array) override {
    Mask *linux_array = static_cast<Mask *>(array);
    delete[] linux_array;
  }
  KMPAffinity::Mask *index_mask_array(KMPAffinity::Mask *array,
                                      int index) override {
    Mask *linux_array = static_cast<Mask *>(array);
    return &(linux_array[index]);
  }
  api_type get_api_type() const override { return NATIVE_OS; }
};
#endif /* KMP_OS_LINUX || KMP_OS_FREEBSD */

#if KMP_OS_WINDOWS
class KMPNativeAffinity : public KMPAffinity {
  class Mask : public KMPAffinity::Mask {
    typedef ULONG_PTR mask_t;
    static const int BITS_PER_MASK_T = sizeof(mask_t) * CHAR_BIT;
    mask_t *mask;

  public:
    Mask() {
      mask = (mask_t *)__kmp_allocate(sizeof(mask_t) * __kmp_num_proc_groups);
    }
    ~Mask() {
      if (mask)
        __kmp_free(mask);
    }
    void set(int i) override {
      mask[i / BITS_PER_MASK_T] |= ((mask_t)1 << (i % BITS_PER_MASK_T));
    }
    bool is_set(int i) const override {
      return (mask[i / BITS_PER_MASK_T] & ((mask_t)1 << (i % BITS_PER_MASK_T)));
    }
    void clear(int i) override {
      mask[i / BITS_PER_MASK_T] &= ~((mask_t)1 << (i % BITS_PER_MASK_T));
    }
    void zero() override {
      for (int i = 0; i < __kmp_num_proc_groups; ++i)
        mask[i] = 0;
    }
    void copy(const KMPAffinity::Mask *src) override {
      const Mask *convert = static_cast<const Mask *>(src);
      for (int i = 0; i < __kmp_num_proc_groups; ++i)
        mask[i] = convert->mask[i];
    }
    void bitwise_and(const KMPAffinity::Mask *rhs) override {
      const Mask *convert = static_cast<const Mask *>(rhs);
      for (int i = 0; i < __kmp_num_proc_groups; ++i)
        mask[i] &= convert->mask[i];
    }
    void bitwise_or(const KMPAffinity::Mask *rhs) override {
      const Mask *convert = static_cast<const Mask *>(rhs);
      for (int i = 0; i < __kmp_num_proc_groups; ++i)
        mask[i] |= convert->mask[i];
    }
    void bitwise_not() override {
      for (int i = 0; i < __kmp_num_proc_groups; ++i)
        mask[i] = ~(mask[i]);
    }
    int begin() const override {
      int retval = 0;
      while (retval < end() && !is_set(retval))
        ++retval;
      return retval;
    }
    int end() const override { return __kmp_num_proc_groups * BITS_PER_MASK_T; }
    int next(int previous) const override {
      int retval = previous + 1;
      while (retval < end() && !is_set(retval))
        ++retval;
      return retval;
    }
    int set_system_affinity(bool abort_on_error) const override {
      if (__kmp_num_proc_groups > 1) {
        // Check for a valid mask.
        GROUP_AFFINITY ga;
        int group = get_proc_group();
        if (group < 0) {
          if (abort_on_error) {
            KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
          }
          return -1;
        }
        // Transform the bit vector into a GROUP_AFFINITY struct
        // and make the system call to set affinity.
        ga.Group = group;
        ga.Mask = mask[group];
        ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;

        KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
        if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
          DWORD error = GetLastError();
          if (abort_on_error) {
            __kmp_fatal(KMP_MSG(CantSetThreadAffMask), KMP_ERR(error),
                        __kmp_msg_null);
          }
          return error;
        }
      } else {
        if (!SetThreadAffinityMask(GetCurrentThread(), *mask)) {
          DWORD error = GetLastError();
          if (abort_on_error) {
            __kmp_fatal(KMP_MSG(CantSetThreadAffMask), KMP_ERR(error),
                        __kmp_msg_null);
          }
          return error;
        }
      }
      return 0;
    }
    int get_system_affinity(bool abort_on_error) override {
      if (__kmp_num_proc_groups > 1) {
        this->zero();
        GROUP_AFFINITY ga;
        KMP_DEBUG_ASSERT(__kmp_GetThreadGroupAffinity != NULL);
        if (__kmp_GetThreadGroupAffinity(GetCurrentThread(), &ga) == 0) {
          DWORD error = GetLastError();
          if (abort_on_error) {
            __kmp_fatal(KMP_MSG(FunctionError, "GetThreadGroupAffinity()"),
                        KMP_ERR(error), __kmp_msg_null);
          }
          return error;
        }
        if ((ga.Group < 0) || (ga.Group > __kmp_num_proc_groups) ||
            (ga.Mask == 0)) {
          return -1;
        }
        mask[ga.Group] = ga.Mask;
      } else {
        mask_t newMask, sysMask, retval;
        if (!GetProcessAffinityMask(GetCurrentProcess(), &newMask, &sysMask)) {
          DWORD error = GetLastError();
          if (abort_on_error) {
            __kmp_fatal(KMP_MSG(FunctionError, "GetProcessAffinityMask()"),
                        KMP_ERR(error), __kmp_msg_null);
          }
          return error;
        }
        retval = SetThreadAffinityMask(GetCurrentThread(), newMask);
        if (!retval) {
          DWORD error = GetLastError();
          if (abort_on_error) {
            __kmp_fatal(KMP_MSG(FunctionError, "SetThreadAffinityMask()"),
                        KMP_ERR(error), __kmp_msg_null);
          }
          return error;
        }
        newMask = SetThreadAffinityMask(GetCurrentThread(), retval);
        if (!newMask) {
          DWORD error = GetLastError();
          if (abort_on_error) {
            __kmp_fatal(KMP_MSG(FunctionError, "SetThreadAffinityMask()"),
                        KMP_ERR(error), __kmp_msg_null);
          }
        }
        *mask = retval;
      }
      return 0;
    }
    int get_proc_group() const override {
      int group = -1;
      if (__kmp_num_proc_groups == 1) {
        return 1;
      }
      for (int i = 0; i < __kmp_num_proc_groups; i++) {
        if (mask[i] == 0)
          continue;
        if (group >= 0)
          return -1;
        group = i;
      }
      return group;
    }
  };
  void determine_capable(const char *env_var) override {
    __kmp_affinity_determine_capable(env_var);
  }
  void bind_thread(int which) override { __kmp_affinity_bind_thread(which); }
  KMPAffinity::Mask *allocate_mask() override { return new Mask(); }
  void deallocate_mask(KMPAffinity::Mask *m) override { delete m; }
  KMPAffinity::Mask *allocate_mask_array(int num) override {
    return new Mask[num];
  }
  void deallocate_mask_array(KMPAffinity::Mask *array) override {
    Mask *windows_array = static_cast<Mask *>(array);
    delete[] windows_array;
  }
  KMPAffinity::Mask *index_mask_array(KMPAffinity::Mask *array,
                                      int index) override {
    Mask *windows_array = static_cast<Mask *>(array);
    return &(windows_array[index]);
  }
  api_type get_api_type() const override { return NATIVE_OS; }
};
#endif /* KMP_OS_WINDOWS */
#endif /* KMP_AFFINITY_SUPPORTED */

class Address {
public:
  static const unsigned maxDepth = 32;
  unsigned labels[maxDepth];
  unsigned childNums[maxDepth];
  unsigned depth;
  unsigned leader;
  Address(unsigned _depth) : depth(_depth), leader(FALSE) {}
  Address &operator=(const Address &b) {
    depth = b.depth;
    for (unsigned i = 0; i < depth; i++) {
      labels[i] = b.labels[i];
      childNums[i] = b.childNums[i];
    }
    leader = FALSE;
    return *this;
  }
  bool operator==(const Address &b) const {
    if (depth != b.depth)
      return false;
    for (unsigned i = 0; i < depth; i++)
      if (labels[i] != b.labels[i])
        return false;
    return true;
  }
  bool isClose(const Address &b, int level) const {
    if (depth != b.depth)
      return false;
    if ((unsigned)level >= depth)
      return true;
    for (unsigned i = 0; i < (depth - level); i++)
      if (labels[i] != b.labels[i])
        return false;
    return true;
  }
  bool operator!=(const Address &b) const { return !operator==(b); }
  void print() const {
    unsigned i;
    printf("Depth: %u --- ", depth);
    for (i = 0; i < depth; i++) {
      printf("%u ", labels[i]);
    }
  }
};

class AddrUnsPair {
public:
  Address first;
  unsigned second;
  AddrUnsPair(Address _first, unsigned _second)
      : first(_first), second(_second) {}
  AddrUnsPair &operator=(const AddrUnsPair &b) {
    first = b.first;
    second = b.second;
    return *this;
  }
  void print() const {
    printf("first = ");
    first.print();
    printf(" --- second = %u", second);
  }
  bool operator==(const AddrUnsPair &b) const {
    if (first != b.first)
      return false;
    if (second != b.second)
      return false;
    return true;
  }
  bool operator!=(const AddrUnsPair &b) const { return !operator==(b); }
};

static int __kmp_affinity_cmp_Address_labels(const void *a, const void *b) {
  const Address *aa = &(((const AddrUnsPair *)a)->first);
  const Address *bb = &(((const AddrUnsPair *)b)->first);
  unsigned depth = aa->depth;
  unsigned i;
  KMP_DEBUG_ASSERT(depth == bb->depth);
  for (i = 0; i < depth; i++) {
    if (aa->labels[i] < bb->labels[i])
      return -1;
    if (aa->labels[i] > bb->labels[i])
      return 1;
  }
  return 0;
}

/* A structure for holding machine-specific hierarchy info to be computed once
   at init. This structure represents a mapping of threads to the actual machine
   hierarchy, or to our best guess at what the hierarchy might be, for the
   purpose of performing an efficient barrier. In the worst case, when there is
   no machine hierarchy information, it produces a tree suitable for a barrier,
   similar to the tree used in the hyper barrier. */
class hierarchy_info {
public:
  /* Good default values for number of leaves and branching factor, given no
     affinity information. Behaves a bit like hyper barrier. */
  static const kmp_uint32 maxLeaves = 4;
  static const kmp_uint32 minBranch = 4;
  /** Number of levels in the hierarchy. Typical levels are threads/core,
      cores/package or socket, packages/node, nodes/machine, etc. We don't want
      to get specific with nomenclature. When the machine is oversubscribed we
      add levels to duplicate the hierarchy, doubling the thread capacity of the
      hierarchy each time we add a level. */
  kmp_uint32 maxLevels;

  /** This is specifically the depth of the machine configuration hierarchy, in
      terms of the number of levels along the longest path from root to any
      leaf. It corresponds to the number of entries in numPerLevel if we exclude
      all but one trailing 1. */
  kmp_uint32 depth;
  kmp_uint32 base_num_threads;
  enum init_status { initialized = 0, not_initialized = 1, initializing = 2 };
  volatile kmp_int8 uninitialized; // 0=initialized, 1=not initialized,
  // 2=initialization in progress
  volatile kmp_int8 resizing; // 0=not resizing, 1=resizing

  /** Level 0 corresponds to leaves. numPerLevel[i] is the number of children
      the parent of a node at level i has. For example, if we have a machine
      with 4 packages, 4 cores/package and 2 HT per core, then numPerLevel =
      {2, 4, 4, 1, 1}. All empty levels are set to 1. */
  kmp_uint32 *numPerLevel;
  kmp_uint32 *skipPerLevel;

  void deriveLevels(AddrUnsPair *adr2os, int num_addrs) {
    int hier_depth = adr2os[0].first.depth;
    int level = 0;
    for (int i = hier_depth - 1; i >= 0; --i) {
      int max = -1;
      for (int j = 0; j < num_addrs; ++j) {
        int next = adr2os[j].first.childNums[i];
        if (next > max)
          max = next;
      }
      numPerLevel[level] = max + 1;
      ++level;
    }
  }

  hierarchy_info()
      : maxLevels(7), depth(1), uninitialized(not_initialized), resizing(0) {}

  void fini() {
    if (!uninitialized && numPerLevel) {
      __kmp_free(numPerLevel);
      numPerLevel = NULL;
      uninitialized = not_initialized;
    }
  }

  void init(AddrUnsPair *adr2os, int num_addrs) {
    kmp_int8 bool_result = KMP_COMPARE_AND_STORE_ACQ8(
        &uninitialized, not_initialized, initializing);
    if (bool_result == 0) { // Wait for initialization
      while (TCR_1(uninitialized) != initialized)
        KMP_CPU_PAUSE();
      return;
    }
    KMP_DEBUG_ASSERT(bool_result == 1);

    /* Added explicit initialization of the data fields here to prevent usage of
       dirty value observed when static library is re-initialized multiple times
       (e.g. when non-OpenMP thread repeatedly launches/joins thread that uses
       OpenMP). */
    depth = 1;
    resizing = 0;
    maxLevels = 7;
    numPerLevel =
        (kmp_uint32 *)__kmp_allocate(maxLevels * 2 * sizeof(kmp_uint32));
    skipPerLevel = &(numPerLevel[maxLevels]);
    for (kmp_uint32 i = 0; i < maxLevels;
         ++i) { // init numPerLevel[*] to 1 item per level
      numPerLevel[i] = 1;
      skipPerLevel[i] = 1;
    }

    // Sort table by physical ID
    if (adr2os) {
      qsort(adr2os, num_addrs, sizeof(*adr2os),
            __kmp_affinity_cmp_Address_labels);
      deriveLevels(adr2os, num_addrs);
    } else {
      numPerLevel[0] = maxLeaves;
      numPerLevel[1] = num_addrs / maxLeaves;
      if (num_addrs % maxLeaves)
        numPerLevel[1]++;
    }

    base_num_threads = num_addrs;
    for (int i = maxLevels - 1; i >= 0;
         --i) // count non-empty levels to get depth
      if (numPerLevel[i] != 1 || depth > 1) // only count one top-level '1'
        depth++;

    kmp_uint32 branch = minBranch;
    if (numPerLevel[0] == 1)
      branch = num_addrs / maxLeaves;
    if (branch < minBranch)
      branch = minBranch;
    for (kmp_uint32 d = 0; d < depth - 1; ++d) { // optimize hierarchy width
      while (numPerLevel[d] > branch ||
             (d == 0 && numPerLevel[d] > maxLeaves)) { // max 4 on level 0!
        if (numPerLevel[d] & 1)
          numPerLevel[d]++;
        numPerLevel[d] = numPerLevel[d] >> 1;
        if (numPerLevel[d + 1] == 1)
          depth++;
        numPerLevel[d + 1] = numPerLevel[d + 1] << 1;
      }
      if (numPerLevel[0] == 1) {
        branch = branch >> 1;
        if (branch < 4)
          branch = minBranch;
      }
    }

    for (kmp_uint32 i = 1; i < depth; ++i)
      skipPerLevel[i] = numPerLevel[i - 1] * skipPerLevel[i - 1];
    // Fill in hierarchy in the case of oversubscription
    for (kmp_uint32 i = depth; i < maxLevels; ++i)
      skipPerLevel[i] = 2 * skipPerLevel[i - 1];

    uninitialized = initialized; // One writer
  }

  // Resize the hierarchy if nproc changes to something larger than before
  void resize(kmp_uint32 nproc) {
    kmp_int8 bool_result = KMP_COMPARE_AND_STORE_ACQ8(&resizing, 0, 1);
    while (bool_result == 0) { // someone else is trying to resize
      KMP_CPU_PAUSE();
      if (nproc <= base_num_threads) // happy with other thread's resize
        return;
      else // try to resize
        bool_result = KMP_COMPARE_AND_STORE_ACQ8(&resizing, 0, 1);
    }
    KMP_DEBUG_ASSERT(bool_result != 0);
    if (nproc <= base_num_threads)
      return; // happy with other thread's resize

    // Calculate new maxLevels
    kmp_uint32 old_sz = skipPerLevel[depth - 1];
    kmp_uint32 incs = 0, old_maxLevels = maxLevels;
    // First see if old maxLevels is enough to contain new size
    for (kmp_uint32 i = depth; i < maxLevels && nproc > old_sz; ++i) {
      skipPerLevel[i] = 2 * skipPerLevel[i - 1];
      numPerLevel[i - 1] *= 2;
      old_sz *= 2;
      depth++;
    }
    if (nproc > old_sz) { // Not enough space, need to expand hierarchy
      while (nproc > old_sz) {
        old_sz *= 2;
        incs++;
        depth++;
      }
      maxLevels += incs;

      // Resize arrays
      kmp_uint32 *old_numPerLevel = numPerLevel;
      kmp_uint32 *old_skipPerLevel = skipPerLevel;
      numPerLevel = skipPerLevel = NULL;
      numPerLevel =
          (kmp_uint32 *)__kmp_allocate(maxLevels * 2 * sizeof(kmp_uint32));
      skipPerLevel = &(numPerLevel[maxLevels]);

      // Copy old elements from old arrays
      for (kmp_uint32 i = 0; i < old_maxLevels;
           ++i) { // init numPerLevel[*] to 1 item per level
        numPerLevel[i] = old_numPerLevel[i];
        skipPerLevel[i] = old_skipPerLevel[i];
      }

      // Init new elements in arrays to 1
      for (kmp_uint32 i = old_maxLevels; i < maxLevels;
           ++i) { // init numPerLevel[*] to 1 item per level
        numPerLevel[i] = 1;
        skipPerLevel[i] = 1;
      }

      // Free old arrays
      __kmp_free(old_numPerLevel);
    }

    // Fill in oversubscription levels of hierarchy
    for (kmp_uint32 i = old_maxLevels; i < maxLevels; ++i)
      skipPerLevel[i] = 2 * skipPerLevel[i - 1];

    base_num_threads = nproc;
    resizing = 0; // One writer
  }
};
#endif // KMP_AFFINITY_H