reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
//===------------ loop.cu - NVPTX OpenMP loop constructs --------- CUDA -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the KMPC interface
// for the loop construct plus other worksharing constructs that use the same
// interface as loops.
//
//===----------------------------------------------------------------------===//

#include "omptarget-nvptx.h"
#include "target_impl.h"

////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// template class that encapsulate all the helper functions
//
// T is loop iteration type (32 | 64)  (unsigned | signed)
// ST is the signed version of T
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////

template <typename T, typename ST> class omptarget_nvptx_LoopSupport {
public:
  ////////////////////////////////////////////////////////////////////////////////
  // Loop with static scheduling with chunk

  // Generic implementation of OMP loop scheduling with static policy
  /*! \brief Calculate initial bounds for static loop and stride
   *  @param[in] loc location in code of the call (not used here)
   *  @param[in] global_tid global thread id
   *  @param[in] schetype type of scheduling (see omptarget-nvptx.h)
   *  @param[in] plastiter pointer to last iteration
   *  @param[in,out] pointer to loop lower bound. it will contain value of
   *  lower bound of first chunk
   *  @param[in,out] pointer to loop upper bound. It will contain value of
   *  upper bound of first chunk
   *  @param[in,out] pointer to loop stride. It will contain value of stride
   *  between two successive chunks executed by the same thread
   *  @param[in] loop increment bump
   *  @param[in] chunk size
   */

  // helper function for static chunk
  INLINE static void ForStaticChunk(int &last, T &lb, T &ub, ST &stride,
                                    ST chunk, T entityId, T numberOfEntities) {
    // each thread executes multiple chunks all of the same size, except
    // the last one

    // distance between two successive chunks
    stride = numberOfEntities * chunk;
    lb = lb + entityId * chunk;
    T inputUb = ub;
    ub = lb + chunk - 1; // Clang uses i <= ub
    // Say ub' is the begining of the last chunk. Then who ever has a
    // lower bound plus a multiple of the increment equal to ub' is
    // the last one.
    T beginingLastChunk = inputUb - (inputUb % chunk);
    last = ((beginingLastChunk - lb) % stride) == 0;
  }

  ////////////////////////////////////////////////////////////////////////////////
  // Loop with static scheduling without chunk

  // helper function for static no chunk
  INLINE static void ForStaticNoChunk(int &last, T &lb, T &ub, ST &stride,
                                      ST &chunk, T entityId,
                                      T numberOfEntities) {
    // No chunk size specified.  Each thread or warp gets at most one
    // chunk; chunks are all almost of equal size
    T loopSize = ub - lb + 1;

    chunk = loopSize / numberOfEntities;
    T leftOver = loopSize - chunk * numberOfEntities;

    if (entityId < leftOver) {
      chunk++;
      lb = lb + entityId * chunk;
    } else {
      lb = lb + entityId * chunk + leftOver;
    }

    T inputUb = ub;
    ub = lb + chunk - 1; // Clang uses i <= ub
    last = lb <= inputUb && inputUb <= ub;
    stride = loopSize; // make sure we only do 1 chunk per warp
  }

  ////////////////////////////////////////////////////////////////////////////////
  // Support for Static Init

  INLINE static void for_static_init(int32_t gtid, int32_t schedtype,
                                     int32_t *plastiter, T *plower, T *pupper,
                                     ST *pstride, ST chunk,
                                     bool IsSPMDExecutionMode) {
    // When IsRuntimeUninitialized is true, we assume that the caller is
    // in an L0 parallel region and that all worker threads participate.

    // Assume we are in teams region or that we use a single block
    // per target region
    ST numberOfActiveOMPThreads = GetNumberOfOmpThreads(IsSPMDExecutionMode);

    // All warps that are in excess of the maximum requested, do
    // not execute the loop
    PRINT(LD_LOOP,
          "OMP Thread %d: schedule type %d, chunk size = %lld, mytid "
          "%d, num tids %d\n",
          (int)gtid, (int)schedtype, (long long)chunk, (int)gtid,
          (int)numberOfActiveOMPThreads);
    ASSERT0(LT_FUSSY, gtid < numberOfActiveOMPThreads,
            "current thread is not needed here; error");

    // copy
    int lastiter = 0;
    T lb = *plower;
    T ub = *pupper;
    ST stride = *pstride;
    // init
    switch (SCHEDULE_WITHOUT_MODIFIERS(schedtype)) {
    case kmp_sched_static_chunk: {
      if (chunk > 0) {
        ForStaticChunk(lastiter, lb, ub, stride, chunk, gtid,
                       numberOfActiveOMPThreads);
        break;
      }
    } // note: if chunk <=0, use nochunk
    case kmp_sched_static_balanced_chunk: {
      if (chunk > 0) {
        // round up to make sure the chunk is enough to cover all iterations
        T tripCount = ub - lb + 1; // +1 because ub is inclusive
        T span = (tripCount + numberOfActiveOMPThreads - 1) /
                 numberOfActiveOMPThreads;
        // perform chunk adjustment
        chunk = (span + chunk - 1) & ~(chunk - 1);

        ASSERT0(LT_FUSSY, ub >= lb, "ub must be >= lb.");
        T oldUb = ub;
        ForStaticChunk(lastiter, lb, ub, stride, chunk, gtid,
                       numberOfActiveOMPThreads);
        if (ub > oldUb)
          ub = oldUb;
        break;
      }
    } // note: if chunk <=0, use nochunk
    case kmp_sched_static_nochunk: {
      ForStaticNoChunk(lastiter, lb, ub, stride, chunk, gtid,
                       numberOfActiveOMPThreads);
      break;
    }
    case kmp_sched_distr_static_chunk: {
      if (chunk > 0) {
        ForStaticChunk(lastiter, lb, ub, stride, chunk, GetOmpTeamId(),
                       GetNumberOfOmpTeams());
        break;
      } // note: if chunk <=0, use nochunk
    }
    case kmp_sched_distr_static_nochunk: {
      ForStaticNoChunk(lastiter, lb, ub, stride, chunk, GetOmpTeamId(),
                       GetNumberOfOmpTeams());
      break;
    }
    case kmp_sched_distr_static_chunk_sched_static_chunkone: {
      ForStaticChunk(lastiter, lb, ub, stride, chunk,
                     numberOfActiveOMPThreads * GetOmpTeamId() + gtid,
                     GetNumberOfOmpTeams() * numberOfActiveOMPThreads);
      break;
    }
    default: {
      ASSERT(LT_FUSSY, 0, "unknown schedtype %d", (int)schedtype);
      PRINT(LD_LOOP, "unknown schedtype %d, revert back to static chunk\n",
            (int)schedtype);
      ForStaticChunk(lastiter, lb, ub, stride, chunk, gtid,
                     numberOfActiveOMPThreads);
      break;
    }
    }
    // copy back
    *plastiter = lastiter;
    *plower = lb;
    *pupper = ub;
    *pstride = stride;
    PRINT(LD_LOOP,
          "Got sched: Active %d, total %d: lb %lld, ub %lld, stride %lld, last "
          "%d\n",
          (int)numberOfActiveOMPThreads, (int)GetNumberOfWorkersInTeam(),
          (long long)(*plower), (long long)(*pupper), (long long)(*pstride),
          (int)lastiter);
  }

  ////////////////////////////////////////////////////////////////////////////////
  // Support for dispatch Init

  INLINE static int OrderedSchedule(kmp_sched_t schedule) {
    return schedule >= kmp_sched_ordered_first &&
           schedule <= kmp_sched_ordered_last;
  }

  INLINE static void dispatch_init(kmp_Ident *loc, int32_t threadId,
                                   kmp_sched_t schedule, T lb, T ub, ST st,
                                   ST chunk) {
    if (checkRuntimeUninitialized(loc)) {
      // In SPMD mode no need to check parallelism level - dynamic scheduling
      // may appear only in L2 parallel regions with lightweight runtime.
      ASSERT0(LT_FUSSY, checkSPMDMode(loc), "Expected non-SPMD mode.");
      return;
    }
    int tid = GetLogicalThreadIdInBlock(checkSPMDMode(loc));
    omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor(tid);
    T tnum = GetNumberOfOmpThreads(checkSPMDMode(loc));
    T tripCount = ub - lb + 1; // +1 because ub is inclusive
    ASSERT0(LT_FUSSY, threadId < tnum,
            "current thread is not needed here; error");

    /* Currently just ignore the monotonic and non-monotonic modifiers
     * (the compiler isn't producing them * yet anyway).
     * When it is we'll want to look at them somewhere here and use that
     * information to add to our schedule choice. We shouldn't need to pass
     * them on, they merely affect which schedule we can legally choose for
     * various dynamic cases. (In paritcular, whether or not a stealing scheme
     * is legal).
     */
    schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule);

    // Process schedule.
    if (tnum == 1 || tripCount <= 1 || OrderedSchedule(schedule)) {
      if (OrderedSchedule(schedule))
        __kmpc_barrier(loc, threadId);
      PRINT(LD_LOOP,
            "go sequential as tnum=%ld, trip count %lld, ordered sched=%d\n",
            (long)tnum, (long long)tripCount, (int)schedule);
      schedule = kmp_sched_static_chunk;
      chunk = tripCount; // one thread gets the whole loop
    } else if (schedule == kmp_sched_runtime) {
      // process runtime
      omp_sched_t rtSched = currTaskDescr->GetRuntimeSched();
      chunk = currTaskDescr->RuntimeChunkSize();
      switch (rtSched) {
      case omp_sched_static: {
        if (chunk > 0)
          schedule = kmp_sched_static_chunk;
        else
          schedule = kmp_sched_static_nochunk;
        break;
      }
      case omp_sched_auto: {
        schedule = kmp_sched_static_chunk;
        chunk = 1;
        break;
      }
      case omp_sched_dynamic:
      case omp_sched_guided: {
        schedule = kmp_sched_dynamic;
        break;
      }
      }
      PRINT(LD_LOOP, "Runtime sched is %d with chunk %lld\n", (int)schedule,
            (long long)chunk);
    } else if (schedule == kmp_sched_auto) {
      schedule = kmp_sched_static_chunk;
      chunk = 1;
      PRINT(LD_LOOP, "Auto sched is %d with chunk %lld\n", (int)schedule,
            (long long)chunk);
    } else {
      PRINT(LD_LOOP, "Dyn sched is %d with chunk %lld\n", (int)schedule,
            (long long)chunk);
      ASSERT(LT_FUSSY,
             schedule == kmp_sched_dynamic || schedule == kmp_sched_guided,
             "unknown schedule %d & chunk %lld\n", (int)schedule,
             (long long)chunk);
    }

    // init schedules
    if (schedule == kmp_sched_static_chunk) {
      ASSERT0(LT_FUSSY, chunk > 0, "bad chunk value");
      // save sched state
      omptarget_nvptx_threadPrivateContext->ScheduleType(tid) = schedule;
      // save ub
      omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid) = ub;
      // compute static chunk
      ST stride;
      int lastiter = 0;
      ForStaticChunk(lastiter, lb, ub, stride, chunk, threadId, tnum);
      // save computed params
      omptarget_nvptx_threadPrivateContext->Chunk(tid) = chunk;
      omptarget_nvptx_threadPrivateContext->NextLowerBound(tid) = lb;
      omptarget_nvptx_threadPrivateContext->Stride(tid) = stride;
      PRINT(LD_LOOP,
            "dispatch init (static chunk) : num threads = %d, ub =  %" PRId64
            ", next lower bound = %llu, stride = %llu\n",
            (int)tnum,
            omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid),
            (unsigned long long)
                omptarget_nvptx_threadPrivateContext->NextLowerBound(tid),
            (unsigned long long)omptarget_nvptx_threadPrivateContext->Stride(
                tid));
    } else if (schedule == kmp_sched_static_balanced_chunk) {
      ASSERT0(LT_FUSSY, chunk > 0, "bad chunk value");
      // save sched state
      omptarget_nvptx_threadPrivateContext->ScheduleType(tid) = schedule;
      // save ub
      omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid) = ub;
      // compute static chunk
      ST stride;
      int lastiter = 0;
      // round up to make sure the chunk is enough to cover all iterations
      T span = (tripCount + tnum - 1) / tnum;
      // perform chunk adjustment
      chunk = (span + chunk - 1) & ~(chunk - 1);

      T oldUb = ub;
      ForStaticChunk(lastiter, lb, ub, stride, chunk, threadId, tnum);
      ASSERT0(LT_FUSSY, ub >= lb, "ub must be >= lb.");
      if (ub > oldUb)
        ub = oldUb;
      // save computed params
      omptarget_nvptx_threadPrivateContext->Chunk(tid) = chunk;
      omptarget_nvptx_threadPrivateContext->NextLowerBound(tid) = lb;
      omptarget_nvptx_threadPrivateContext->Stride(tid) = stride;
      PRINT(LD_LOOP,
            "dispatch init (static chunk) : num threads = %d, ub =  %" PRId64
            ", next lower bound = %llu, stride = %llu\n",
            (int)tnum,
            omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid),
            (unsigned long long)
                omptarget_nvptx_threadPrivateContext->NextLowerBound(tid),
            (unsigned long long)omptarget_nvptx_threadPrivateContext->Stride(
                tid));
    } else if (schedule == kmp_sched_static_nochunk) {
      ASSERT0(LT_FUSSY, chunk == 0, "bad chunk value");
      // save sched state
      omptarget_nvptx_threadPrivateContext->ScheduleType(tid) = schedule;
      // save ub
      omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid) = ub;
      // compute static chunk
      ST stride;
      int lastiter = 0;
      ForStaticNoChunk(lastiter, lb, ub, stride, chunk, threadId, tnum);
      // save computed params
      omptarget_nvptx_threadPrivateContext->Chunk(tid) = chunk;
      omptarget_nvptx_threadPrivateContext->NextLowerBound(tid) = lb;
      omptarget_nvptx_threadPrivateContext->Stride(tid) = stride;
      PRINT(LD_LOOP,
            "dispatch init (static nochunk) : num threads = %d, ub = %" PRId64
            ", next lower bound = %llu, stride = %llu\n",
            (int)tnum,
            omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid),
            (unsigned long long)
                omptarget_nvptx_threadPrivateContext->NextLowerBound(tid),
            (unsigned long long)omptarget_nvptx_threadPrivateContext->Stride(
                tid));
    } else if (schedule == kmp_sched_dynamic || schedule == kmp_sched_guided) {
      // save data
      omptarget_nvptx_threadPrivateContext->ScheduleType(tid) = schedule;
      if (chunk < 1)
        chunk = 1;
      omptarget_nvptx_threadPrivateContext->Chunk(tid) = chunk;
      omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid) = ub;
      omptarget_nvptx_threadPrivateContext->NextLowerBound(tid) = lb;
      __kmpc_barrier(loc, threadId);
      if (tid == 0) {
        omptarget_nvptx_threadPrivateContext->Cnt() = 0;
        __threadfence_block();
      }
      __kmpc_barrier(loc, threadId);
      PRINT(LD_LOOP,
            "dispatch init (dyn) : num threads = %d, lb = %llu, ub = %" PRId64
            ", chunk %" PRIu64 "\n",
            (int)tnum,
            (unsigned long long)
                omptarget_nvptx_threadPrivateContext->NextLowerBound(tid),
            omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid),
            omptarget_nvptx_threadPrivateContext->Chunk(tid));
    }
  }

  ////////////////////////////////////////////////////////////////////////////////
  // Support for dispatch next

  INLINE static uint64_t Shuffle(__kmpc_impl_lanemask_t active, int64_t val,
                                 int leader) {
    uint32_t lo, hi;
    __kmpc_impl_unpack(val, lo, hi);
    hi = __kmpc_impl_shfl_sync(active, hi, leader);
    lo = __kmpc_impl_shfl_sync(active, lo, leader);
    return __kmpc_impl_pack(lo, hi);
  }

  INLINE static uint64_t NextIter() {
    __kmpc_impl_lanemask_t active = __kmpc_impl_activemask();
    uint32_t leader = __kmpc_impl_ffs(active) - 1;
    uint32_t change = __kmpc_impl_popc(active);
    __kmpc_impl_lanemask_t lane_mask_lt = __kmpc_impl_lanemask_lt();
    unsigned int rank = __kmpc_impl_popc(active & lane_mask_lt);
    uint64_t warp_res;
    if (rank == 0) {
      warp_res = atomicAdd(
          (unsigned long long *)&omptarget_nvptx_threadPrivateContext->Cnt(),
          change);
    }
    warp_res = Shuffle(active, warp_res, leader);
    return warp_res + rank;
  }

  INLINE static int DynamicNextChunk(T &lb, T &ub, T chunkSize,
                                     T loopLowerBound, T loopUpperBound) {
    T N = NextIter();
    lb = loopLowerBound + N * chunkSize;
    ub = lb + chunkSize - 1;  // Clang uses i <= ub

    // 3 result cases:
    //  a. lb and ub < loopUpperBound --> NOT_FINISHED
    //  b. lb < loopUpperBound and ub >= loopUpperBound: last chunk -->
    //  NOT_FINISHED
    //  c. lb and ub >= loopUpperBound: empty chunk --> FINISHED
    // a.
    if (lb <= loopUpperBound && ub < loopUpperBound) {
      PRINT(LD_LOOPD, "lb %lld, ub %lld, loop ub %lld; not finished\n",
            (long long)lb, (long long)ub, (long long)loopUpperBound);
      return NOT_FINISHED;
    }
    // b.
    if (lb <= loopUpperBound) {
      PRINT(LD_LOOPD, "lb %lld, ub %lld, loop ub %lld; clip to loop ub\n",
            (long long)lb, (long long)ub, (long long)loopUpperBound);
      ub = loopUpperBound;
      return LAST_CHUNK;
    }
    // c. if we are here, we are in case 'c'
    lb = loopUpperBound + 2;
    ub = loopUpperBound + 1;
    PRINT(LD_LOOPD, "lb %lld, ub %lld, loop ub %lld; finished\n", (long long)lb,
          (long long)ub, (long long)loopUpperBound);
    return FINISHED;
  }

  INLINE static int dispatch_next(kmp_Ident *loc, int32_t gtid, int32_t *plast,
                                  T *plower, T *pupper, ST *pstride) {
    if (checkRuntimeUninitialized(loc)) {
      // In SPMD mode no need to check parallelism level - dynamic scheduling
      // may appear only in L2 parallel regions with lightweight runtime.
      ASSERT0(LT_FUSSY, checkSPMDMode(loc), "Expected non-SPMD mode.");
      if (*plast)
        return DISPATCH_FINISHED;
      *plast = 1;
      return DISPATCH_NOTFINISHED;
    }
    // ID of a thread in its own warp

    // automatically selects thread or warp ID based on selected implementation
    int tid = GetLogicalThreadIdInBlock(checkSPMDMode(loc));
    ASSERT0(LT_FUSSY, gtid < GetNumberOfOmpThreads(checkSPMDMode(loc)),
            "current thread is not needed here; error");
    // retrieve schedule
    kmp_sched_t schedule =
        omptarget_nvptx_threadPrivateContext->ScheduleType(tid);

    // xxx reduce to one
    if (schedule == kmp_sched_static_chunk ||
        schedule == kmp_sched_static_nochunk) {
      T myLb = omptarget_nvptx_threadPrivateContext->NextLowerBound(tid);
      T ub = omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid);
      // finished?
      if (myLb > ub) {
        PRINT(LD_LOOP, "static loop finished with myLb %lld, ub %lld\n",
              (long long)myLb, (long long)ub);
        return DISPATCH_FINISHED;
      }
      // not finished, save current bounds
      ST chunk = omptarget_nvptx_threadPrivateContext->Chunk(tid);
      *plower = myLb;
      T myUb = myLb + chunk - 1; // Clang uses i <= ub
      if (myUb > ub)
        myUb = ub;
      *pupper = myUb;
      *plast = (int32_t)(myUb == ub);

      // increment next lower bound by the stride
      ST stride = omptarget_nvptx_threadPrivateContext->Stride(tid);
      omptarget_nvptx_threadPrivateContext->NextLowerBound(tid) = myLb + stride;
      PRINT(LD_LOOP, "static loop continues with myLb %lld, myUb %lld\n",
            (long long)*plower, (long long)*pupper);
      return DISPATCH_NOTFINISHED;
    }
    ASSERT0(LT_FUSSY,
            schedule == kmp_sched_dynamic || schedule == kmp_sched_guided,
            "bad sched");
    T myLb, myUb;
    int finished = DynamicNextChunk(
        myLb, myUb, omptarget_nvptx_threadPrivateContext->Chunk(tid),
        omptarget_nvptx_threadPrivateContext->NextLowerBound(tid),
        omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid));

    if (finished == FINISHED)
      return DISPATCH_FINISHED;

    // not finished (either not finished or last chunk)
    *plast = (int32_t)(finished == LAST_CHUNK);
    *plower = myLb;
    *pupper = myUb;
    *pstride = 1;

    PRINT(LD_LOOP,
          "Got sched: active %d, total %d: lb %lld, ub %lld, stride = %lld, "
          "last %d\n",
          (int)GetNumberOfOmpThreads(isSPMDMode()),
          (int)GetNumberOfWorkersInTeam(), (long long)*plower,
          (long long)*pupper, (long long)*pstride, (int)*plast);
    return DISPATCH_NOTFINISHED;
  }

  INLINE static void dispatch_fini() {
    // nothing
  }

  ////////////////////////////////////////////////////////////////////////////////
  // end of template class that encapsulate all the helper functions
  ////////////////////////////////////////////////////////////////////////////////
};

////////////////////////////////////////////////////////////////////////////////
// KMP interface implementation (dyn loops)
////////////////////////////////////////////////////////////////////////////////

// init
EXTERN void __kmpc_dispatch_init_4(kmp_Ident *loc, int32_t tid,
                                   int32_t schedule, int32_t lb, int32_t ub,
                                   int32_t st, int32_t chunk) {
  PRINT0(LD_IO, "call kmpc_dispatch_init_4\n");
  omptarget_nvptx_LoopSupport<int32_t, int32_t>::dispatch_init(
      loc, tid, (kmp_sched_t)schedule, lb, ub, st, chunk);
}

EXTERN void __kmpc_dispatch_init_4u(kmp_Ident *loc, int32_t tid,
                                    int32_t schedule, uint32_t lb, uint32_t ub,
                                    int32_t st, int32_t chunk) {
  PRINT0(LD_IO, "call kmpc_dispatch_init_4u\n");
  omptarget_nvptx_LoopSupport<uint32_t, int32_t>::dispatch_init(
      loc, tid, (kmp_sched_t)schedule, lb, ub, st, chunk);
}

EXTERN void __kmpc_dispatch_init_8(kmp_Ident *loc, int32_t tid,
                                   int32_t schedule, int64_t lb, int64_t ub,
                                   int64_t st, int64_t chunk) {
  PRINT0(LD_IO, "call kmpc_dispatch_init_8\n");
  omptarget_nvptx_LoopSupport<int64_t, int64_t>::dispatch_init(
      loc, tid, (kmp_sched_t)schedule, lb, ub, st, chunk);
}

EXTERN void __kmpc_dispatch_init_8u(kmp_Ident *loc, int32_t tid,
                                    int32_t schedule, uint64_t lb, uint64_t ub,
                                    int64_t st, int64_t chunk) {
  PRINT0(LD_IO, "call kmpc_dispatch_init_8u\n");
  omptarget_nvptx_LoopSupport<uint64_t, int64_t>::dispatch_init(
      loc, tid, (kmp_sched_t)schedule, lb, ub, st, chunk);
}

// next
EXTERN int __kmpc_dispatch_next_4(kmp_Ident *loc, int32_t tid, int32_t *p_last,
                                  int32_t *p_lb, int32_t *p_ub, int32_t *p_st) {
  PRINT0(LD_IO, "call kmpc_dispatch_next_4\n");
  return omptarget_nvptx_LoopSupport<int32_t, int32_t>::dispatch_next(
      loc, tid, p_last, p_lb, p_ub, p_st);
}

EXTERN int __kmpc_dispatch_next_4u(kmp_Ident *loc, int32_t tid,
                                   int32_t *p_last, uint32_t *p_lb,
                                   uint32_t *p_ub, int32_t *p_st) {
  PRINT0(LD_IO, "call kmpc_dispatch_next_4u\n");
  return omptarget_nvptx_LoopSupport<uint32_t, int32_t>::dispatch_next(
      loc, tid, p_last, p_lb, p_ub, p_st);
}

EXTERN int __kmpc_dispatch_next_8(kmp_Ident *loc, int32_t tid, int32_t *p_last,
                                  int64_t *p_lb, int64_t *p_ub, int64_t *p_st) {
  PRINT0(LD_IO, "call kmpc_dispatch_next_8\n");
  return omptarget_nvptx_LoopSupport<int64_t, int64_t>::dispatch_next(
      loc, tid, p_last, p_lb, p_ub, p_st);
}

EXTERN int __kmpc_dispatch_next_8u(kmp_Ident *loc, int32_t tid,
                                   int32_t *p_last, uint64_t *p_lb,
                                   uint64_t *p_ub, int64_t *p_st) {
  PRINT0(LD_IO, "call kmpc_dispatch_next_8u\n");
  return omptarget_nvptx_LoopSupport<uint64_t, int64_t>::dispatch_next(
      loc, tid, p_last, p_lb, p_ub, p_st);
}

// fini
EXTERN void __kmpc_dispatch_fini_4(kmp_Ident *loc, int32_t tid) {
  PRINT0(LD_IO, "call kmpc_dispatch_fini_4\n");
  omptarget_nvptx_LoopSupport<int32_t, int32_t>::dispatch_fini();
}

EXTERN void __kmpc_dispatch_fini_4u(kmp_Ident *loc, int32_t tid) {
  PRINT0(LD_IO, "call kmpc_dispatch_fini_4u\n");
  omptarget_nvptx_LoopSupport<uint32_t, int32_t>::dispatch_fini();
}

EXTERN void __kmpc_dispatch_fini_8(kmp_Ident *loc, int32_t tid) {
  PRINT0(LD_IO, "call kmpc_dispatch_fini_8\n");
  omptarget_nvptx_LoopSupport<int64_t, int64_t>::dispatch_fini();
}

EXTERN void __kmpc_dispatch_fini_8u(kmp_Ident *loc, int32_t tid) {
  PRINT0(LD_IO, "call kmpc_dispatch_fini_8u\n");
  omptarget_nvptx_LoopSupport<uint64_t, int64_t>::dispatch_fini();
}

////////////////////////////////////////////////////////////////////////////////
// KMP interface implementation (static loops)
////////////////////////////////////////////////////////////////////////////////

EXTERN void __kmpc_for_static_init_4(kmp_Ident *loc, int32_t global_tid,
                                     int32_t schedtype, int32_t *plastiter,
                                     int32_t *plower, int32_t *pupper,
                                     int32_t *pstride, int32_t incr,
                                     int32_t chunk) {
  PRINT0(LD_IO, "call kmpc_for_static_init_4\n");
  omptarget_nvptx_LoopSupport<int32_t, int32_t>::for_static_init(
      global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
      checkSPMDMode(loc));
}

EXTERN void __kmpc_for_static_init_4u(kmp_Ident *loc, int32_t global_tid,
                                      int32_t schedtype, int32_t *plastiter,
                                      uint32_t *plower, uint32_t *pupper,
                                      int32_t *pstride, int32_t incr,
                                      int32_t chunk) {
  PRINT0(LD_IO, "call kmpc_for_static_init_4u\n");
  omptarget_nvptx_LoopSupport<uint32_t, int32_t>::for_static_init(
      global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
      checkSPMDMode(loc));
}

EXTERN void __kmpc_for_static_init_8(kmp_Ident *loc, int32_t global_tid,
                                     int32_t schedtype, int32_t *plastiter,
                                     int64_t *plower, int64_t *pupper,
                                     int64_t *pstride, int64_t incr,
                                     int64_t chunk) {
  PRINT0(LD_IO, "call kmpc_for_static_init_8\n");
  omptarget_nvptx_LoopSupport<int64_t, int64_t>::for_static_init(
      global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
      checkSPMDMode(loc));
}

EXTERN void __kmpc_for_static_init_8u(kmp_Ident *loc, int32_t global_tid,
                                      int32_t schedtype, int32_t *plastiter,
                                      uint64_t *plower, uint64_t *pupper,
                                      int64_t *pstride, int64_t incr,
                                      int64_t chunk) {
  PRINT0(LD_IO, "call kmpc_for_static_init_8u\n");
  omptarget_nvptx_LoopSupport<uint64_t, int64_t>::for_static_init(
      global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
      checkSPMDMode(loc));
}

EXTERN
void __kmpc_for_static_init_4_simple_spmd(kmp_Ident *loc, int32_t global_tid,
                                          int32_t schedtype, int32_t *plastiter,
                                          int32_t *plower, int32_t *pupper,
                                          int32_t *pstride, int32_t incr,
                                          int32_t chunk) {
  PRINT0(LD_IO, "call kmpc_for_static_init_4_simple_spmd\n");
  omptarget_nvptx_LoopSupport<int32_t, int32_t>::for_static_init(
      global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
      /*IsSPMDExecutionMode=*/true);
}

EXTERN
void __kmpc_for_static_init_4u_simple_spmd(kmp_Ident *loc, int32_t global_tid,
                                           int32_t schedtype,
                                           int32_t *plastiter, uint32_t *plower,
                                           uint32_t *pupper, int32_t *pstride,
                                           int32_t incr, int32_t chunk) {
  PRINT0(LD_IO, "call kmpc_for_static_init_4u_simple_spmd\n");
  omptarget_nvptx_LoopSupport<uint32_t, int32_t>::for_static_init(
      global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
      /*IsSPMDExecutionMode=*/true);
}

EXTERN
void __kmpc_for_static_init_8_simple_spmd(kmp_Ident *loc, int32_t global_tid,
                                          int32_t schedtype, int32_t *plastiter,
                                          int64_t *plower, int64_t *pupper,
                                          int64_t *pstride, int64_t incr,
                                          int64_t chunk) {
  PRINT0(LD_IO, "call kmpc_for_static_init_8_simple_spmd\n");
  omptarget_nvptx_LoopSupport<int64_t, int64_t>::for_static_init(
      global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
      /*IsSPMDExecutionMode=*/true);
}

EXTERN
void __kmpc_for_static_init_8u_simple_spmd(kmp_Ident *loc, int32_t global_tid,
                                           int32_t schedtype,
                                           int32_t *plastiter, uint64_t *plower,
                                           uint64_t *pupper, int64_t *pstride,
                                           int64_t incr, int64_t chunk) {
  PRINT0(LD_IO, "call kmpc_for_static_init_8u_simple_spmd\n");
  omptarget_nvptx_LoopSupport<uint64_t, int64_t>::for_static_init(
      global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
      /*IsSPMDExecutionMode=*/true);
}

EXTERN
void __kmpc_for_static_init_4_simple_generic(
    kmp_Ident *loc, int32_t global_tid, int32_t schedtype, int32_t *plastiter,
    int32_t *plower, int32_t *pupper, int32_t *pstride, int32_t incr,
    int32_t chunk) {
  PRINT0(LD_IO, "call kmpc_for_static_init_4_simple_generic\n");
  omptarget_nvptx_LoopSupport<int32_t, int32_t>::for_static_init(
      global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
      /*IsSPMDExecutionMode=*/false);
}

EXTERN
void __kmpc_for_static_init_4u_simple_generic(
    kmp_Ident *loc, int32_t global_tid, int32_t schedtype, int32_t *plastiter,
    uint32_t *plower, uint32_t *pupper, int32_t *pstride, int32_t incr,
    int32_t chunk) {
  PRINT0(LD_IO, "call kmpc_for_static_init_4u_simple_generic\n");
  omptarget_nvptx_LoopSupport<uint32_t, int32_t>::for_static_init(
      global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
      /*IsSPMDExecutionMode=*/false);
}

EXTERN
void __kmpc_for_static_init_8_simple_generic(
    kmp_Ident *loc, int32_t global_tid, int32_t schedtype, int32_t *plastiter,
    int64_t *plower, int64_t *pupper, int64_t *pstride, int64_t incr,
    int64_t chunk) {
  PRINT0(LD_IO, "call kmpc_for_static_init_8_simple_generic\n");
  omptarget_nvptx_LoopSupport<int64_t, int64_t>::for_static_init(
      global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
      /*IsSPMDExecutionMode=*/false);
}

EXTERN
void __kmpc_for_static_init_8u_simple_generic(
    kmp_Ident *loc, int32_t global_tid, int32_t schedtype, int32_t *plastiter,
    uint64_t *plower, uint64_t *pupper, int64_t *pstride, int64_t incr,
    int64_t chunk) {
  PRINT0(LD_IO, "call kmpc_for_static_init_8u_simple_generic\n");
  omptarget_nvptx_LoopSupport<uint64_t, int64_t>::for_static_init(
      global_tid, schedtype, plastiter, plower, pupper, pstride, chunk,
      /*IsSPMDExecutionMode=*/false);
}

EXTERN void __kmpc_for_static_fini(kmp_Ident *loc, int32_t global_tid) {
  PRINT0(LD_IO, "call kmpc_for_static_fini\n");
}

namespace {
INLINE void syncWorkersInGenericMode(uint32_t NumThreads) {
  int NumWarps = ((NumThreads + WARPSIZE - 1) / WARPSIZE);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
  // On Volta and newer architectures we require that all lanes in
  // a warp (at least, all present for the kernel launch) participate in the
  // barrier.  This is enforced when launching the parallel region.  An
  // exception is when there are < WARPSIZE workers.  In this case only 1 worker
  // is started, so we don't need a barrier.
  if (NumThreads > 1) {
#endif
    named_sync(L1_BARRIER, WARPSIZE * NumWarps);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
  }
#endif
}
}; // namespace

EXTERN void __kmpc_reduce_conditional_lastprivate(kmp_Ident *loc, int32_t gtid,
                                                  int32_t varNum, void *array) {
  PRINT0(LD_IO, "call to __kmpc_reduce_conditional_lastprivate(...)\n");
  ASSERT0(LT_FUSSY, checkRuntimeInitialized(loc),
          "Expected non-SPMD mode + initialized runtime.");

  omptarget_nvptx_TeamDescr &teamDescr = getMyTeamDescriptor();
  uint32_t NumThreads = GetNumberOfOmpThreads(checkSPMDMode(loc));
  uint64_t *Buffer = teamDescr.getLastprivateIterBuffer();
  for (unsigned i = 0; i < varNum; i++) {
    // Reset buffer.
    if (gtid == 0)
      *Buffer = 0; // Reset to minimum loop iteration value.

    // Barrier.
    syncWorkersInGenericMode(NumThreads);

    // Atomic max of iterations.
    uint64_t *varArray = (uint64_t *)array;
    uint64_t elem = varArray[i];
    (void)atomicMax((unsigned long long int *)Buffer,
                    (unsigned long long int)elem);

    // Barrier.
    syncWorkersInGenericMode(NumThreads);

    // Read max value and update thread private array.
    varArray[i] = *Buffer;

    // Barrier.
    syncWorkersInGenericMode(NumThreads);
  }
}