reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
//===-- xray_fdr_controller.h ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a function call tracing system.
//
//===----------------------------------------------------------------------===//
#ifndef COMPILER_RT_LIB_XRAY_XRAY_FDR_CONTROLLER_H_
#define COMPILER_RT_LIB_XRAY_XRAY_FDR_CONTROLLER_H_

#include <limits>
#include <time.h>

#include "xray/xray_interface.h"
#include "xray/xray_records.h"
#include "xray_buffer_queue.h"
#include "xray_fdr_log_writer.h"

namespace __xray {

template <size_t Version = 5> class FDRController {
  BufferQueue *BQ;
  BufferQueue::Buffer &B;
  FDRLogWriter &W;
  int (*WallClockReader)(clockid_t, struct timespec *) = 0;
  uint64_t CycleThreshold = 0;

  uint64_t LastFunctionEntryTSC = 0;
  uint64_t LatestTSC = 0;
  uint16_t LatestCPU = 0;
  tid_t TId = 0;
  pid_t PId = 0;
  bool First = true;

  uint32_t UndoableFunctionEnters = 0;
  uint32_t UndoableTailExits = 0;

  bool finalized() const XRAY_NEVER_INSTRUMENT {
    return BQ == nullptr || BQ->finalizing();
  }

  bool hasSpace(size_t S) XRAY_NEVER_INSTRUMENT {
    return B.Data != nullptr && B.Generation == BQ->generation() &&
           W.getNextRecord() + S <= reinterpret_cast<char *>(B.Data) + B.Size;
  }

  constexpr int32_t mask(int32_t FuncId) const XRAY_NEVER_INSTRUMENT {
    return FuncId & ((1 << 29) - 1);
  }

  bool getNewBuffer() XRAY_NEVER_INSTRUMENT {
    if (BQ->getBuffer(B) != BufferQueue::ErrorCode::Ok)
      return false;

    W.resetRecord();
    DCHECK_EQ(W.getNextRecord(), B.Data);
    LatestTSC = 0;
    LatestCPU = 0;
    First = true;
    UndoableFunctionEnters = 0;
    UndoableTailExits = 0;
    atomic_store(B.Extents, 0, memory_order_release);
    return true;
  }

  bool setupNewBuffer() XRAY_NEVER_INSTRUMENT {
    if (finalized())
      return false;

    DCHECK(hasSpace(sizeof(MetadataRecord) * 3));
    TId = GetTid();
    PId = internal_getpid();
    struct timespec TS {
      0, 0
    };
    WallClockReader(CLOCK_MONOTONIC, &TS);

    MetadataRecord Metadata[] = {
        // Write out a MetadataRecord to signify that this is the start of a new
        // buffer, associated with a particular thread, with a new CPU. For the
        // data, we have 15 bytes to squeeze as much information as we can. At
        // this point we only write down the following bytes:
        //   - Thread ID (tid_t, cast to 4 bytes type due to Darwin being 8
        //   bytes)
        createMetadataRecord<MetadataRecord::RecordKinds::NewBuffer>(
            static_cast<int32_t>(TId)),

        // Also write the WalltimeMarker record. We only really need microsecond
        // precision here, and enforce across platforms that we need 64-bit
        // seconds and 32-bit microseconds encoded in the Metadata record.
        createMetadataRecord<MetadataRecord::RecordKinds::WalltimeMarker>(
            static_cast<int64_t>(TS.tv_sec),
            static_cast<int32_t>(TS.tv_nsec / 1000)),

        // Also write the Pid record.
        createMetadataRecord<MetadataRecord::RecordKinds::Pid>(
            static_cast<int32_t>(PId)),
    };

    if (finalized())
      return false;
    return W.writeMetadataRecords(Metadata);
  }

  bool prepareBuffer(size_t S) XRAY_NEVER_INSTRUMENT {
    if (finalized())
      return returnBuffer();

    if (UNLIKELY(!hasSpace(S))) {
      if (!returnBuffer())
        return false;
      if (!getNewBuffer())
        return false;
      if (!setupNewBuffer())
        return false;
    }

    if (First) {
      First = false;
      W.resetRecord();
      atomic_store(B.Extents, 0, memory_order_release);
      return setupNewBuffer();
    }

    return true;
  }

  bool returnBuffer() XRAY_NEVER_INSTRUMENT {
    if (BQ == nullptr)
      return false;

    First = true;
    if (finalized()) {
      BQ->releaseBuffer(B); // ignore result.
      return false;
    }

    return BQ->releaseBuffer(B) == BufferQueue::ErrorCode::Ok;
  }

  enum class PreambleResult { NoChange, WroteMetadata, InvalidBuffer };
  PreambleResult recordPreamble(uint64_t TSC,
                                uint16_t CPU) XRAY_NEVER_INSTRUMENT {
    if (UNLIKELY(LatestCPU != CPU || LatestTSC == 0)) {
      // We update our internal tracking state for the Latest TSC and CPU we've
      // seen, then write out the appropriate metadata and function records.
      LatestTSC = TSC;
      LatestCPU = CPU;

      if (B.Generation != BQ->generation())
        return PreambleResult::InvalidBuffer;

      W.writeMetadata<MetadataRecord::RecordKinds::NewCPUId>(CPU, TSC);
      return PreambleResult::WroteMetadata;
    }

    DCHECK_EQ(LatestCPU, CPU);

    if (UNLIKELY(LatestTSC > TSC ||
                 TSC - LatestTSC >
                     uint64_t{std::numeric_limits<int32_t>::max()})) {
      // Either the TSC has wrapped around from the last TSC we've seen or the
      // delta is too large to fit in a 32-bit signed integer, so we write a
      // wrap-around record.
      LatestTSC = TSC;

      if (B.Generation != BQ->generation())
        return PreambleResult::InvalidBuffer;

      W.writeMetadata<MetadataRecord::RecordKinds::TSCWrap>(TSC);
      return PreambleResult::WroteMetadata;
    }

    return PreambleResult::NoChange;
  }

  bool rewindRecords(int32_t FuncId, uint64_t TSC,
                     uint16_t CPU) XRAY_NEVER_INSTRUMENT {
    // Undo one enter record, because at this point we are either at the state
    // of:
    // - We are exiting a function that we recently entered.
    // - We are exiting a function that was the result of a sequence of tail
    //   exits, and we can check whether the tail exits can be re-wound.
    //
    FunctionRecord F;
    W.undoWrites(sizeof(FunctionRecord));
    if (B.Generation != BQ->generation())
      return false;
    internal_memcpy(&F, W.getNextRecord(), sizeof(FunctionRecord));

    DCHECK(F.RecordKind ==
               uint8_t(FunctionRecord::RecordKinds::FunctionEnter) &&
           "Expected to find function entry recording when rewinding.");
    DCHECK_EQ(F.FuncId, FuncId & ~(0x0F << 28));

    LatestTSC -= F.TSCDelta;
    if (--UndoableFunctionEnters != 0) {
      LastFunctionEntryTSC -= F.TSCDelta;
      return true;
    }

    LastFunctionEntryTSC = 0;
    auto RewindingTSC = LatestTSC;
    auto RewindingRecordPtr = W.getNextRecord() - sizeof(FunctionRecord);
    while (UndoableTailExits) {
      if (B.Generation != BQ->generation())
        return false;
      internal_memcpy(&F, RewindingRecordPtr, sizeof(FunctionRecord));
      DCHECK_EQ(F.RecordKind,
                uint8_t(FunctionRecord::RecordKinds::FunctionTailExit));
      RewindingTSC -= F.TSCDelta;
      RewindingRecordPtr -= sizeof(FunctionRecord);
      if (B.Generation != BQ->generation())
        return false;
      internal_memcpy(&F, RewindingRecordPtr, sizeof(FunctionRecord));

      // This tail call exceeded the threshold duration. It will not be erased.
      if ((TSC - RewindingTSC) >= CycleThreshold) {
        UndoableTailExits = 0;
        return true;
      }

      --UndoableTailExits;
      W.undoWrites(sizeof(FunctionRecord) * 2);
      LatestTSC = RewindingTSC;
    }
    return true;
  }

public:
  template <class WallClockFunc>
  FDRController(BufferQueue *BQ, BufferQueue::Buffer &B, FDRLogWriter &W,
                WallClockFunc R, uint64_t C) XRAY_NEVER_INSTRUMENT
      : BQ(BQ),
        B(B),
        W(W),
        WallClockReader(R),
        CycleThreshold(C) {}

  bool functionEnter(int32_t FuncId, uint64_t TSC,
                     uint16_t CPU) XRAY_NEVER_INSTRUMENT {
    if (finalized() ||
        !prepareBuffer(sizeof(MetadataRecord) + sizeof(FunctionRecord)))
      return returnBuffer();

    auto PreambleStatus = recordPreamble(TSC, CPU);
    if (PreambleStatus == PreambleResult::InvalidBuffer)
      return returnBuffer();

    if (PreambleStatus == PreambleResult::WroteMetadata) {
      UndoableFunctionEnters = 1;
      UndoableTailExits = 0;
    } else {
      ++UndoableFunctionEnters;
    }

    auto Delta = TSC - LatestTSC;
    LastFunctionEntryTSC = TSC;
    LatestTSC = TSC;
    return W.writeFunction(FDRLogWriter::FunctionRecordKind::Enter,
                           mask(FuncId), Delta);
  }

  bool functionTailExit(int32_t FuncId, uint64_t TSC,
                        uint16_t CPU) XRAY_NEVER_INSTRUMENT {
    if (finalized())
      return returnBuffer();

    if (!prepareBuffer(sizeof(MetadataRecord) + sizeof(FunctionRecord)))
      return returnBuffer();

    auto PreambleStatus = recordPreamble(TSC, CPU);
    if (PreambleStatus == PreambleResult::InvalidBuffer)
      return returnBuffer();

    if (PreambleStatus == PreambleResult::NoChange &&
        UndoableFunctionEnters != 0 &&
        TSC - LastFunctionEntryTSC < CycleThreshold)
      return rewindRecords(FuncId, TSC, CPU);

    UndoableTailExits = UndoableFunctionEnters ? UndoableTailExits + 1 : 0;
    UndoableFunctionEnters = 0;
    auto Delta = TSC - LatestTSC;
    LatestTSC = TSC;
    return W.writeFunction(FDRLogWriter::FunctionRecordKind::TailExit,
                           mask(FuncId), Delta);
  }

  bool functionEnterArg(int32_t FuncId, uint64_t TSC, uint16_t CPU,
                        uint64_t Arg) XRAY_NEVER_INSTRUMENT {
    if (finalized() ||
        !prepareBuffer((2 * sizeof(MetadataRecord)) + sizeof(FunctionRecord)) ||
        recordPreamble(TSC, CPU) == PreambleResult::InvalidBuffer)
      return returnBuffer();

    auto Delta = TSC - LatestTSC;
    LatestTSC = TSC;
    LastFunctionEntryTSC = 0;
    UndoableFunctionEnters = 0;
    UndoableTailExits = 0;

    return W.writeFunctionWithArg(FDRLogWriter::FunctionRecordKind::EnterArg,
                                  mask(FuncId), Delta, Arg);
  }

  bool functionExit(int32_t FuncId, uint64_t TSC,
                    uint16_t CPU) XRAY_NEVER_INSTRUMENT {
    if (finalized() ||
        !prepareBuffer(sizeof(MetadataRecord) + sizeof(FunctionRecord)))
      return returnBuffer();

    auto PreambleStatus = recordPreamble(TSC, CPU);
    if (PreambleStatus == PreambleResult::InvalidBuffer)
      return returnBuffer();

    if (PreambleStatus == PreambleResult::NoChange &&
        UndoableFunctionEnters != 0 &&
        TSC - LastFunctionEntryTSC < CycleThreshold)
      return rewindRecords(FuncId, TSC, CPU);

    auto Delta = TSC - LatestTSC;
    LatestTSC = TSC;
    UndoableFunctionEnters = 0;
    UndoableTailExits = 0;
    return W.writeFunction(FDRLogWriter::FunctionRecordKind::Exit, mask(FuncId),
                           Delta);
  }

  bool customEvent(uint64_t TSC, uint16_t CPU, const void *Event,
                   int32_t EventSize) XRAY_NEVER_INSTRUMENT {
    if (finalized() ||
        !prepareBuffer((2 * sizeof(MetadataRecord)) + EventSize) ||
        recordPreamble(TSC, CPU) == PreambleResult::InvalidBuffer)
      return returnBuffer();

    auto Delta = TSC - LatestTSC;
    LatestTSC = TSC;
    UndoableFunctionEnters = 0;
    UndoableTailExits = 0;
    return W.writeCustomEvent(Delta, Event, EventSize);
  }

  bool typedEvent(uint64_t TSC, uint16_t CPU, uint16_t EventType,
                  const void *Event, int32_t EventSize) XRAY_NEVER_INSTRUMENT {
    if (finalized() ||
        !prepareBuffer((2 * sizeof(MetadataRecord)) + EventSize) ||
        recordPreamble(TSC, CPU) == PreambleResult::InvalidBuffer)
      return returnBuffer();

    auto Delta = TSC - LatestTSC;
    LatestTSC = TSC;
    UndoableFunctionEnters = 0;
    UndoableTailExits = 0;
    return W.writeTypedEvent(Delta, EventType, Event, EventSize);
  }

  bool flush() XRAY_NEVER_INSTRUMENT {
    if (finalized()) {
      returnBuffer(); // ignore result.
      return true;
    }
    return returnBuffer();
  }
};

} // namespace __xray

#endif // COMPILER-RT_LIB_XRAY_XRAY_FDR_CONTROLLER_H_