reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
//===-- tsan_sync_test.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_sync.h"
#include "tsan_rtl.h"
#include "gtest/gtest.h"

namespace __tsan {

TEST(MetaMap, Basic) {
  ThreadState *thr = cur_thread();
  MetaMap *m = &ctx->metamap;
  u64 block[1] = {};  // fake malloc block
  m->AllocBlock(thr, 0, (uptr)&block[0], 1 * sizeof(u64));
  MBlock *mb = m->GetBlock((uptr)&block[0]);
  EXPECT_NE(mb, (MBlock*)0);
  EXPECT_EQ(mb->siz, 1 * sizeof(u64));
  EXPECT_EQ(mb->tid, thr->tid);
  uptr sz = m->FreeBlock(thr->proc(), (uptr)&block[0]);
  EXPECT_EQ(sz, 1 * sizeof(u64));
  mb = m->GetBlock((uptr)&block[0]);
  EXPECT_EQ(mb, (MBlock*)0);
}

TEST(MetaMap, FreeRange) {
  ThreadState *thr = cur_thread();
  MetaMap *m = &ctx->metamap;
  u64 block[4] = {};  // fake malloc block
  m->AllocBlock(thr, 0, (uptr)&block[0], 1 * sizeof(u64));
  m->AllocBlock(thr, 0, (uptr)&block[1], 3 * sizeof(u64));
  MBlock *mb1 = m->GetBlock((uptr)&block[0]);
  EXPECT_EQ(mb1->siz, 1 * sizeof(u64));
  MBlock *mb2 = m->GetBlock((uptr)&block[1]);
  EXPECT_EQ(mb2->siz, 3 * sizeof(u64));
  m->FreeRange(thr->proc(), (uptr)&block[0], 4 * sizeof(u64));
  mb1 = m->GetBlock((uptr)&block[0]);
  EXPECT_EQ(mb1, (MBlock*)0);
  mb2 = m->GetBlock((uptr)&block[1]);
  EXPECT_EQ(mb2, (MBlock*)0);
}

TEST(MetaMap, Sync) {
  ThreadState *thr = cur_thread();
  MetaMap *m = &ctx->metamap;
  u64 block[4] = {};  // fake malloc block
  m->AllocBlock(thr, 0, (uptr)&block[0], 4 * sizeof(u64));
  SyncVar *s1 = m->GetIfExistsAndLock((uptr)&block[0], true);
  EXPECT_EQ(s1, (SyncVar*)0);
  s1 = m->GetOrCreateAndLock(thr, 0, (uptr)&block[0], true);
  EXPECT_NE(s1, (SyncVar*)0);
  EXPECT_EQ(s1->addr, (uptr)&block[0]);
  s1->mtx.Unlock();
  SyncVar *s2 = m->GetOrCreateAndLock(thr, 0, (uptr)&block[1], false);
  EXPECT_NE(s2, (SyncVar*)0);
  EXPECT_EQ(s2->addr, (uptr)&block[1]);
  s2->mtx.ReadUnlock();
  m->FreeBlock(thr->proc(), (uptr)&block[0]);
  s1 = m->GetIfExistsAndLock((uptr)&block[0], true);
  EXPECT_EQ(s1, (SyncVar*)0);
  s2 = m->GetIfExistsAndLock((uptr)&block[1], true);
  EXPECT_EQ(s2, (SyncVar*)0);
  m->OnProcIdle(thr->proc());
}

TEST(MetaMap, MoveMemory) {
  ThreadState *thr = cur_thread();
  MetaMap *m = &ctx->metamap;
  u64 block1[4] = {};  // fake malloc block
  u64 block2[4] = {};  // fake malloc block
  m->AllocBlock(thr, 0, (uptr)&block1[0], 3 * sizeof(u64));
  m->AllocBlock(thr, 0, (uptr)&block1[3], 1 * sizeof(u64));
  SyncVar *s1 = m->GetOrCreateAndLock(thr, 0, (uptr)&block1[0], true);
  s1->mtx.Unlock();
  SyncVar *s2 = m->GetOrCreateAndLock(thr, 0, (uptr)&block1[1], true);
  s2->mtx.Unlock();
  m->MoveMemory((uptr)&block1[0], (uptr)&block2[0], 4 * sizeof(u64));
  MBlock *mb1 = m->GetBlock((uptr)&block1[0]);
  EXPECT_EQ(mb1, (MBlock*)0);
  MBlock *mb2 = m->GetBlock((uptr)&block1[3]);
  EXPECT_EQ(mb2, (MBlock*)0);
  mb1 = m->GetBlock((uptr)&block2[0]);
  EXPECT_NE(mb1, (MBlock*)0);
  EXPECT_EQ(mb1->siz, 3 * sizeof(u64));
  mb2 = m->GetBlock((uptr)&block2[3]);
  EXPECT_NE(mb2, (MBlock*)0);
  EXPECT_EQ(mb2->siz, 1 * sizeof(u64));
  s1 = m->GetIfExistsAndLock((uptr)&block1[0], true);
  EXPECT_EQ(s1, (SyncVar*)0);
  s2 = m->GetIfExistsAndLock((uptr)&block1[1], true);
  EXPECT_EQ(s2, (SyncVar*)0);
  s1 = m->GetIfExistsAndLock((uptr)&block2[0], true);
  EXPECT_NE(s1, (SyncVar*)0);
  EXPECT_EQ(s1->addr, (uptr)&block2[0]);
  s1->mtx.Unlock();
  s2 = m->GetIfExistsAndLock((uptr)&block2[1], true);
  EXPECT_NE(s2, (SyncVar*)0);
  EXPECT_EQ(s2->addr, (uptr)&block2[1]);
  s2->mtx.Unlock();
  m->FreeRange(thr->proc(), (uptr)&block2[0], 4 * sizeof(u64));
}

TEST(MetaMap, ResetSync) {
  ThreadState *thr = cur_thread();
  MetaMap *m = &ctx->metamap;
  u64 block[1] = {};  // fake malloc block
  m->AllocBlock(thr, 0, (uptr)&block[0], 1 * sizeof(u64));
  SyncVar *s = m->GetOrCreateAndLock(thr, 0, (uptr)&block[0], true);
  s->Reset(thr->proc());
  s->mtx.Unlock();
  uptr sz = m->FreeBlock(thr->proc(), (uptr)&block[0]);
  EXPECT_EQ(sz, 1 * sizeof(u64));
}

}  // namespace __tsan