reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
//===-- sanitizer_allocator.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries.
// This allocator is used inside run-times.
//===----------------------------------------------------------------------===//

#include "sanitizer_allocator.h"

#include "sanitizer_allocator_checks.h"
#include "sanitizer_allocator_internal.h"
#include "sanitizer_atomic.h"
#include "sanitizer_common.h"

namespace __sanitizer {

// Default allocator names.
const char *PrimaryAllocatorName = "SizeClassAllocator";
const char *SecondaryAllocatorName = "LargeMmapAllocator";

// ThreadSanitizer for Go uses libc malloc/free.
#if SANITIZER_GO || defined(SANITIZER_USE_MALLOC)
# if SANITIZER_LINUX && !SANITIZER_ANDROID
extern "C" void *__libc_malloc(uptr size);
#  if !SANITIZER_GO
extern "C" void *__libc_memalign(uptr alignment, uptr size);
#  endif
extern "C" void *__libc_realloc(void *ptr, uptr size);
extern "C" void __libc_free(void *ptr);
# else
#  include <stdlib.h>
#  define __libc_malloc malloc
#  if !SANITIZER_GO
static void *__libc_memalign(uptr alignment, uptr size) {
  void *p;
  uptr error = posix_memalign(&p, alignment, size);
  if (error) return nullptr;
  return p;
}
#  endif
#  define __libc_realloc realloc
#  define __libc_free free
# endif

static void *RawInternalAlloc(uptr size, InternalAllocatorCache *cache,
                              uptr alignment) {
  (void)cache;
#if !SANITIZER_GO
  if (alignment == 0)
    return __libc_malloc(size);
  else
    return __libc_memalign(alignment, size);
#else
  // Windows does not provide __libc_memalign/posix_memalign. It provides
  // __aligned_malloc, but the allocated blocks can't be passed to free,
  // they need to be passed to __aligned_free. InternalAlloc interface does
  // not account for such requirement. Alignemnt does not seem to be used
  // anywhere in runtime, so just call __libc_malloc for now.
  DCHECK_EQ(alignment, 0);
  return __libc_malloc(size);
#endif
}

static void *RawInternalRealloc(void *ptr, uptr size,
                                InternalAllocatorCache *cache) {
  (void)cache;
  return __libc_realloc(ptr, size);
}

static void RawInternalFree(void *ptr, InternalAllocatorCache *cache) {
  (void)cache;
  __libc_free(ptr);
}

InternalAllocator *internal_allocator() {
  return 0;
}

#else  // SANITIZER_GO || defined(SANITIZER_USE_MALLOC)

static ALIGNED(64) char internal_alloc_placeholder[sizeof(InternalAllocator)];
static atomic_uint8_t internal_allocator_initialized;
static StaticSpinMutex internal_alloc_init_mu;

static InternalAllocatorCache internal_allocator_cache;
static StaticSpinMutex internal_allocator_cache_mu;

InternalAllocator *internal_allocator() {
  InternalAllocator *internal_allocator_instance =
      reinterpret_cast<InternalAllocator *>(&internal_alloc_placeholder);
  if (atomic_load(&internal_allocator_initialized, memory_order_acquire) == 0) {
    SpinMutexLock l(&internal_alloc_init_mu);
    if (atomic_load(&internal_allocator_initialized, memory_order_relaxed) ==
        0) {
      internal_allocator_instance->Init(kReleaseToOSIntervalNever);
      atomic_store(&internal_allocator_initialized, 1, memory_order_release);
    }
  }
  return internal_allocator_instance;
}

static void *RawInternalAlloc(uptr size, InternalAllocatorCache *cache,
                              uptr alignment) {
  if (alignment == 0) alignment = 8;
  if (cache == 0) {
    SpinMutexLock l(&internal_allocator_cache_mu);
    return internal_allocator()->Allocate(&internal_allocator_cache, size,
                                          alignment);
  }
  return internal_allocator()->Allocate(cache, size, alignment);
}

static void *RawInternalRealloc(void *ptr, uptr size,
                                InternalAllocatorCache *cache) {
  uptr alignment = 8;
  if (cache == 0) {
    SpinMutexLock l(&internal_allocator_cache_mu);
    return internal_allocator()->Reallocate(&internal_allocator_cache, ptr,
                                            size, alignment);
  }
  return internal_allocator()->Reallocate(cache, ptr, size, alignment);
}

static void RawInternalFree(void *ptr, InternalAllocatorCache *cache) {
  if (!cache) {
    SpinMutexLock l(&internal_allocator_cache_mu);
    return internal_allocator()->Deallocate(&internal_allocator_cache, ptr);
  }
  internal_allocator()->Deallocate(cache, ptr);
}

#endif  // SANITIZER_GO || defined(SANITIZER_USE_MALLOC)

const u64 kBlockMagic = 0x6A6CB03ABCEBC041ull;

static void NORETURN ReportInternalAllocatorOutOfMemory(uptr requested_size) {
  SetAllocatorOutOfMemory();
  Report("FATAL: %s: internal allocator is out of memory trying to allocate "
         "0x%zx bytes\n", SanitizerToolName, requested_size);
  Die();
}

void *InternalAlloc(uptr size, InternalAllocatorCache *cache, uptr alignment) {
  if (size + sizeof(u64) < size)
    return nullptr;
  void *p = RawInternalAlloc(size + sizeof(u64), cache, alignment);
  if (UNLIKELY(!p))
    ReportInternalAllocatorOutOfMemory(size + sizeof(u64));
  ((u64*)p)[0] = kBlockMagic;
  return (char*)p + sizeof(u64);
}

void *InternalRealloc(void *addr, uptr size, InternalAllocatorCache *cache) {
  if (!addr)
    return InternalAlloc(size, cache);
  if (size + sizeof(u64) < size)
    return nullptr;
  addr = (char*)addr - sizeof(u64);
  size = size + sizeof(u64);
  CHECK_EQ(kBlockMagic, ((u64*)addr)[0]);
  void *p = RawInternalRealloc(addr, size, cache);
  if (UNLIKELY(!p))
    ReportInternalAllocatorOutOfMemory(size);
  return (char*)p + sizeof(u64);
}

void *InternalReallocArray(void *addr, uptr count, uptr size,
                           InternalAllocatorCache *cache) {
  if (UNLIKELY(CheckForCallocOverflow(count, size))) {
    Report(
        "FATAL: %s: reallocarray parameters overflow: count * size (%zd * %zd) "
        "cannot be represented in type size_t\n",
        SanitizerToolName, count, size);
    Die();
  }
  return InternalRealloc(addr, count * size, cache);
}

void *InternalCalloc(uptr count, uptr size, InternalAllocatorCache *cache) {
  if (UNLIKELY(CheckForCallocOverflow(count, size))) {
    Report("FATAL: %s: calloc parameters overflow: count * size (%zd * %zd) "
           "cannot be represented in type size_t\n", SanitizerToolName, count,
           size);
    Die();
  }
  void *p = InternalAlloc(count * size, cache);
  if (LIKELY(p))
    internal_memset(p, 0, count * size);
  return p;
}

void InternalFree(void *addr, InternalAllocatorCache *cache) {
  if (!addr)
    return;
  addr = (char*)addr - sizeof(u64);
  CHECK_EQ(kBlockMagic, ((u64*)addr)[0]);
  ((u64*)addr)[0] = 0;
  RawInternalFree(addr, cache);
}

// LowLevelAllocator
constexpr uptr kLowLevelAllocatorDefaultAlignment = 8;
static uptr low_level_alloc_min_alignment = kLowLevelAllocatorDefaultAlignment;
static LowLevelAllocateCallback low_level_alloc_callback;

void *LowLevelAllocator::Allocate(uptr size) {
  // Align allocation size.
  size = RoundUpTo(size, low_level_alloc_min_alignment);
  if (allocated_end_ - allocated_current_ < (sptr)size) {
    uptr size_to_allocate = Max(size, GetPageSizeCached());
    allocated_current_ =
        (char*)MmapOrDie(size_to_allocate, __func__);
    allocated_end_ = allocated_current_ + size_to_allocate;
    if (low_level_alloc_callback) {
      low_level_alloc_callback((uptr)allocated_current_,
                               size_to_allocate);
    }
  }
  CHECK(allocated_end_ - allocated_current_ >= (sptr)size);
  void *res = allocated_current_;
  allocated_current_ += size;
  return res;
}

void SetLowLevelAllocateMinAlignment(uptr alignment) {
  CHECK(IsPowerOfTwo(alignment));
  low_level_alloc_min_alignment = Max(alignment, low_level_alloc_min_alignment);
}

void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback) {
  low_level_alloc_callback = callback;
}

// Allocator's OOM and other errors handling support.

static atomic_uint8_t allocator_out_of_memory = {0};
static atomic_uint8_t allocator_may_return_null = {0};

bool IsAllocatorOutOfMemory() {
  return atomic_load_relaxed(&allocator_out_of_memory);
}

void SetAllocatorOutOfMemory() {
  atomic_store_relaxed(&allocator_out_of_memory, 1);
}

bool AllocatorMayReturnNull() {
  return atomic_load(&allocator_may_return_null, memory_order_relaxed);
}

void SetAllocatorMayReturnNull(bool may_return_null) {
  atomic_store(&allocator_may_return_null, may_return_null,
               memory_order_relaxed);
}

void PrintHintAllocatorCannotReturnNull() {
  Report("HINT: if you don't care about these errors you may set "
         "allocator_may_return_null=1\n");
}

} // namespace __sanitizer