reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
//===----------------------Hexagon builtin routine ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// Double Precision square root

#define EXP r28

#define A r1:0
#define AH r1
#define AL r0

#define SFSH r3:2
#define SF_S r3
#define SF_H r2

#define SFHALF_SONE r5:4
#define S_ONE r4
#define SFHALF r5
#define SF_D r6
#define SF_E r7
#define RECIPEST r8
#define SFRAD r9

#define FRACRAD r11:10
#define FRACRADH r11
#define FRACRADL r10

#define ROOT r13:12
#define ROOTHI r13
#define ROOTLO r12

#define PROD r15:14
#define PRODHI r15
#define PRODLO r14

#define P_TMP p0
#define P_EXP1 p1
#define NORMAL p2

#define SF_EXPBITS 8
#define SF_MANTBITS 23

#define DF_EXPBITS 11
#define DF_MANTBITS 52

#define DF_BIAS 0x3ff

#define DFCLASS_ZERO     0x01
#define DFCLASS_NORMAL   0x02
#define DFCLASS_DENORMAL 0x02
#define DFCLASS_INFINITE 0x08
#define DFCLASS_NAN      0x10

#define Q6_ALIAS(TAG) .global __qdsp_##TAG ; .set __qdsp_##TAG, __hexagon_##TAG; .type __qdsp_##TAG,@function
#define FAST_ALIAS(TAG) .global __hexagon_fast_##TAG ; .set __hexagon_fast_##TAG, __hexagon_##TAG; .type __hexagon_fast_##TAG,@function
#define FAST2_ALIAS(TAG) .global __hexagon_fast2_##TAG ; .set __hexagon_fast2_##TAG, __hexagon_##TAG; .type __hexagon_fast2_##TAG,@function
#define END(TAG) .size TAG,.-TAG

	.text
	.global __hexagon_sqrtdf2
	.type __hexagon_sqrtdf2,@function
	.global __hexagon_sqrt
	.type __hexagon_sqrt,@function
	Q6_ALIAS(sqrtdf2)
	Q6_ALIAS(sqrt)
	FAST_ALIAS(sqrtdf2)
	FAST_ALIAS(sqrt)
	FAST2_ALIAS(sqrtdf2)
	FAST2_ALIAS(sqrt)
	.type sqrt,@function
	.p2align 5
__hexagon_sqrtdf2:
__hexagon_sqrt:
	{
		PROD = extractu(A,#SF_MANTBITS+1,#DF_MANTBITS-SF_MANTBITS)
		EXP = extractu(AH,#DF_EXPBITS,#DF_MANTBITS-32)
		SFHALF_SONE = combine(##0x3f000004,#1)
	}
	{
		NORMAL = dfclass(A,#DFCLASS_NORMAL)		// Is it normal
		NORMAL = cmp.gt(AH,#-1)				// and positive?
		if (!NORMAL.new) jump:nt .Lsqrt_abnormal
		SFRAD = or(SFHALF,PRODLO)
	}
#undef NORMAL
.Ldenormal_restart:
	{
		FRACRAD = A
		SF_E,P_TMP = sfinvsqrta(SFRAD)
		SFHALF = and(SFHALF,#-16)
		SFSH = #0
	}
#undef A
#undef AH
#undef AL
#define ERROR r1:0
#define ERRORHI r1
#define ERRORLO r0
	// SF_E : reciprocal square root
	// SF_H : half rsqrt
	// sf_S : square root
	// SF_D : error term
	// SFHALF: 0.5
	{
		SF_S += sfmpy(SF_E,SFRAD):lib		// s0: root
		SF_H += sfmpy(SF_E,SFHALF):lib		// h0: 0.5*y0. Could also decrement exponent...
		SF_D = SFHALF
#undef SFRAD
#define SHIFTAMT r9
		SHIFTAMT = and(EXP,#1)
	}
	{
		SF_D -= sfmpy(SF_S,SF_H):lib		// d0: 0.5-H*S = 0.5-0.5*~1
		FRACRADH = insert(S_ONE,#DF_EXPBITS+1,#DF_MANTBITS-32)	// replace upper bits with hidden
		P_EXP1 = cmp.gtu(SHIFTAMT,#0)
	}
	{
		SF_S += sfmpy(SF_S,SF_D):lib		// s1: refine sqrt
		SF_H += sfmpy(SF_H,SF_D):lib		// h1: refine half-recip
		SF_D = SFHALF
		SHIFTAMT = mux(P_EXP1,#8,#9)
	}
	{
		SF_D -= sfmpy(SF_S,SF_H):lib		// d1: error term
		FRACRAD = asl(FRACRAD,SHIFTAMT)		// Move fracrad bits to right place
		SHIFTAMT = mux(P_EXP1,#3,#2)
	}
	{
		SF_H += sfmpy(SF_H,SF_D):lib		// d2: rsqrt
		// cool trick: half of 1/sqrt(x) has same mantissa as 1/sqrt(x).
		PROD = asl(FRACRAD,SHIFTAMT)		// fracrad<<(2+exp1)
	}
	{
		SF_H = and(SF_H,##0x007fffff)
	}
	{
		SF_H = add(SF_H,##0x00800000 - 3)
		SHIFTAMT = mux(P_EXP1,#7,#8)
	}
	{
		RECIPEST = asl(SF_H,SHIFTAMT)
		SHIFTAMT = mux(P_EXP1,#15-(1+1),#15-(1+0))
	}
	{
		ROOT = mpyu(RECIPEST,PRODHI)		// root = mpyu_full(recipest,hi(fracrad<<(2+exp1)))
	}

#undef SFSH	// r3:2
#undef SF_H	// r2
#undef SF_S	// r3
#undef S_ONE	// r4
#undef SFHALF	// r5
#undef SFHALF_SONE	// r5:4
#undef SF_D	// r6
#undef SF_E	// r7

#define HL r3:2
#define LL r5:4
#define HH r7:6

#undef P_EXP1
#define P_CARRY0 p1
#define P_CARRY1 p2
#define P_CARRY2 p3

	// Iteration 0
	// Maybe we can save a cycle by starting with ERROR=asl(fracrad), then as we multiply
	// We can shift and subtract instead of shift and add?
	{
		ERROR = asl(FRACRAD,#15)
		PROD = mpyu(ROOTHI,ROOTHI)
		P_CARRY0 = cmp.eq(r0,r0)
	}
	{
		ERROR -= asl(PROD,#15)
		PROD = mpyu(ROOTHI,ROOTLO)
		P_CARRY1 = cmp.eq(r0,r0)
	}
	{
		ERROR -= lsr(PROD,#16)
		P_CARRY2 = cmp.eq(r0,r0)
	}
	{
		ERROR = mpyu(ERRORHI,RECIPEST)
	}
	{
		ROOT += lsr(ERROR,SHIFTAMT)
		SHIFTAMT = add(SHIFTAMT,#16)
		ERROR = asl(FRACRAD,#31)		// for next iter
	}
	// Iteration 1
	{
		PROD = mpyu(ROOTHI,ROOTHI)
		ERROR -= mpyu(ROOTHI,ROOTLO)	// amount is 31, no shift needed
	}
	{
		ERROR -= asl(PROD,#31)
		PROD = mpyu(ROOTLO,ROOTLO)
	}
	{
		ERROR -= lsr(PROD,#33)
	}
	{
		ERROR = mpyu(ERRORHI,RECIPEST)
	}
	{
		ROOT += lsr(ERROR,SHIFTAMT)
		SHIFTAMT = add(SHIFTAMT,#16)
		ERROR = asl(FRACRAD,#47)	// for next iter
	}
	// Iteration 2
	{
		PROD = mpyu(ROOTHI,ROOTHI)
	}
	{
		ERROR -= asl(PROD,#47)
		PROD = mpyu(ROOTHI,ROOTLO)
	}
	{
		ERROR -= asl(PROD,#16)		// bidir shr 31-47
		PROD = mpyu(ROOTLO,ROOTLO)
	}
	{
		ERROR -= lsr(PROD,#17)		// 64-47
	}
	{
		ERROR = mpyu(ERRORHI,RECIPEST)
	}
	{
		ROOT += lsr(ERROR,SHIFTAMT)
	}
#undef ERROR
#undef PROD
#undef PRODHI
#undef PRODLO
#define REM_HI r15:14
#define REM_HI_HI r15
#define REM_LO r1:0
#undef RECIPEST
#undef SHIFTAMT
#define TWOROOT_LO r9:8
	// Adjust Root
	{
		HL = mpyu(ROOTHI,ROOTLO)
		LL = mpyu(ROOTLO,ROOTLO)
		REM_HI = #0
		REM_LO = #0
	}
	{
		HL += lsr(LL,#33)
		LL += asl(HL,#33)
		P_CARRY0 = cmp.eq(r0,r0)
	}
	{
		HH = mpyu(ROOTHI,ROOTHI)
		REM_LO = sub(REM_LO,LL,P_CARRY0):carry
		TWOROOT_LO = #1
	}
	{
		HH += lsr(HL,#31)
		TWOROOT_LO += asl(ROOT,#1)
	}
#undef HL
#undef LL
#define REM_HI_TMP r3:2
#define REM_HI_TMP_HI r3
#define REM_LO_TMP r5:4
	{
		REM_HI = sub(FRACRAD,HH,P_CARRY0):carry
		REM_LO_TMP = sub(REM_LO,TWOROOT_LO,P_CARRY1):carry
#undef FRACRAD
#undef HH
#define ZERO r11:10
#define ONE r7:6
		ONE = #1
		ZERO = #0
	}
	{
		REM_HI_TMP = sub(REM_HI,ZERO,P_CARRY1):carry
		ONE = add(ROOT,ONE)
		EXP = add(EXP,#-DF_BIAS)			// subtract bias --> signed exp
	}
	{
				// If carry set, no borrow: result was still positive
		if (P_CARRY1) ROOT = ONE
		if (P_CARRY1) REM_LO = REM_LO_TMP
		if (P_CARRY1) REM_HI = REM_HI_TMP
	}
	{
		REM_LO_TMP = sub(REM_LO,TWOROOT_LO,P_CARRY2):carry
		ONE = #1
		EXP = asr(EXP,#1)				// divide signed exp by 2
	}
	{
		REM_HI_TMP = sub(REM_HI,ZERO,P_CARRY2):carry
		ONE = add(ROOT,ONE)
	}
	{
		if (P_CARRY2) ROOT = ONE
		if (P_CARRY2) REM_LO = REM_LO_TMP
								// since tworoot <= 2^32, remhi must be zero
#undef REM_HI_TMP
#undef REM_HI_TMP_HI
#define S_ONE r2
#define ADJ r3
		S_ONE = #1
	}
	{
		P_TMP = cmp.eq(REM_LO,ZERO)			// is the low part zero
		if (!P_TMP.new) ROOTLO = or(ROOTLO,S_ONE)	// if so, it's exact... hopefully
		ADJ = cl0(ROOT)
		EXP = add(EXP,#-63)
	}
#undef REM_LO
#define RET r1:0
#define RETHI r1
	{
		RET = convert_ud2df(ROOT)			// set up mantissa, maybe set inexact flag
		EXP = add(EXP,ADJ)				// add back bias
	}
	{
		RETHI += asl(EXP,#DF_MANTBITS-32)		// add exponent adjust
		jumpr r31
	}
#undef REM_LO_TMP
#undef REM_HI_TMP
#undef REM_HI_TMP_HI
#undef REM_LO
#undef REM_HI
#undef TWOROOT_LO

#undef RET
#define A r1:0
#define AH r1
#define AL r1
#undef S_ONE
#define TMP r3:2
#define TMPHI r3
#define TMPLO r2
#undef P_CARRY0
#define P_NEG p1


#define SFHALF r5
#define SFRAD r9
.Lsqrt_abnormal:
	{
		P_TMP = dfclass(A,#DFCLASS_ZERO)			// zero?
		if (P_TMP.new) jumpr:t r31
	}
	{
		P_TMP = dfclass(A,#DFCLASS_NAN)
		if (P_TMP.new) jump:nt .Lsqrt_nan
	}
	{
		P_TMP = cmp.gt(AH,#-1)
		if (!P_TMP.new) jump:nt .Lsqrt_invalid_neg
		if (!P_TMP.new) EXP = ##0x7F800001			// sNaN
	}
	{
		P_TMP = dfclass(A,#DFCLASS_INFINITE)
		if (P_TMP.new) jumpr:nt r31
	}
	// If we got here, we're denormal
	// prepare to restart
	{
		A = extractu(A,#DF_MANTBITS,#0)		// Extract mantissa
	}
	{
		EXP = add(clb(A),#-DF_EXPBITS)		// how much to normalize?
	}
	{
		A = asl(A,EXP)				// Shift mantissa
		EXP = sub(#1,EXP)			// Form exponent
	}
	{
		AH = insert(EXP,#1,#DF_MANTBITS-32)		// insert lsb of exponent
	}
	{
		TMP = extractu(A,#SF_MANTBITS+1,#DF_MANTBITS-SF_MANTBITS)	// get sf value (mant+exp1)
		SFHALF = ##0x3f000004						// form half constant
	}
	{
		SFRAD = or(SFHALF,TMPLO)			// form sf value
		SFHALF = and(SFHALF,#-16)
		jump .Ldenormal_restart				// restart
	}
.Lsqrt_nan:
	{
		EXP = convert_df2sf(A)				// if sNaN, get invalid
		A = #-1						// qNaN
		jumpr r31
	}
.Lsqrt_invalid_neg:
	{
		A = convert_sf2df(EXP)				// Invalid,NaNval
		jumpr r31
	}
END(__hexagon_sqrt)
END(__hexagon_sqrtdf2)