1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
| //===----------------------Hexagon builtin routine ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Double Precision square root
#define EXP r28
#define A r1:0
#define AH r1
#define AL r0
#define SFSH r3:2
#define SF_S r3
#define SF_H r2
#define SFHALF_SONE r5:4
#define S_ONE r4
#define SFHALF r5
#define SF_D r6
#define SF_E r7
#define RECIPEST r8
#define SFRAD r9
#define FRACRAD r11:10
#define FRACRADH r11
#define FRACRADL r10
#define ROOT r13:12
#define ROOTHI r13
#define ROOTLO r12
#define PROD r15:14
#define PRODHI r15
#define PRODLO r14
#define P_TMP p0
#define P_EXP1 p1
#define NORMAL p2
#define SF_EXPBITS 8
#define SF_MANTBITS 23
#define DF_EXPBITS 11
#define DF_MANTBITS 52
#define DF_BIAS 0x3ff
#define DFCLASS_ZERO 0x01
#define DFCLASS_NORMAL 0x02
#define DFCLASS_DENORMAL 0x02
#define DFCLASS_INFINITE 0x08
#define DFCLASS_NAN 0x10
#define Q6_ALIAS(TAG) .global __qdsp_##TAG ; .set __qdsp_##TAG, __hexagon_##TAG; .type __qdsp_##TAG,@function
#define FAST_ALIAS(TAG) .global __hexagon_fast_##TAG ; .set __hexagon_fast_##TAG, __hexagon_##TAG; .type __hexagon_fast_##TAG,@function
#define FAST2_ALIAS(TAG) .global __hexagon_fast2_##TAG ; .set __hexagon_fast2_##TAG, __hexagon_##TAG; .type __hexagon_fast2_##TAG,@function
#define END(TAG) .size TAG,.-TAG
.text
.global __hexagon_sqrtdf2
.type __hexagon_sqrtdf2,@function
.global __hexagon_sqrt
.type __hexagon_sqrt,@function
Q6_ALIAS(sqrtdf2)
Q6_ALIAS(sqrt)
FAST_ALIAS(sqrtdf2)
FAST_ALIAS(sqrt)
FAST2_ALIAS(sqrtdf2)
FAST2_ALIAS(sqrt)
.type sqrt,@function
.p2align 5
__hexagon_sqrtdf2:
__hexagon_sqrt:
{
PROD = extractu(A,#SF_MANTBITS+1,#DF_MANTBITS-SF_MANTBITS)
EXP = extractu(AH,#DF_EXPBITS,#DF_MANTBITS-32)
SFHALF_SONE = combine(##0x3f000004,#1)
}
{
NORMAL = dfclass(A,#DFCLASS_NORMAL) // Is it normal
NORMAL = cmp.gt(AH,#-1) // and positive?
if (!NORMAL.new) jump:nt .Lsqrt_abnormal
SFRAD = or(SFHALF,PRODLO)
}
#undef NORMAL
.Ldenormal_restart:
{
FRACRAD = A
SF_E,P_TMP = sfinvsqrta(SFRAD)
SFHALF = and(SFHALF,#-16)
SFSH = #0
}
#undef A
#undef AH
#undef AL
#define ERROR r1:0
#define ERRORHI r1
#define ERRORLO r0
// SF_E : reciprocal square root
// SF_H : half rsqrt
// sf_S : square root
// SF_D : error term
// SFHALF: 0.5
{
SF_S += sfmpy(SF_E,SFRAD):lib // s0: root
SF_H += sfmpy(SF_E,SFHALF):lib // h0: 0.5*y0. Could also decrement exponent...
SF_D = SFHALF
#undef SFRAD
#define SHIFTAMT r9
SHIFTAMT = and(EXP,#1)
}
{
SF_D -= sfmpy(SF_S,SF_H):lib // d0: 0.5-H*S = 0.5-0.5*~1
FRACRADH = insert(S_ONE,#DF_EXPBITS+1,#DF_MANTBITS-32) // replace upper bits with hidden
P_EXP1 = cmp.gtu(SHIFTAMT,#0)
}
{
SF_S += sfmpy(SF_S,SF_D):lib // s1: refine sqrt
SF_H += sfmpy(SF_H,SF_D):lib // h1: refine half-recip
SF_D = SFHALF
SHIFTAMT = mux(P_EXP1,#8,#9)
}
{
SF_D -= sfmpy(SF_S,SF_H):lib // d1: error term
FRACRAD = asl(FRACRAD,SHIFTAMT) // Move fracrad bits to right place
SHIFTAMT = mux(P_EXP1,#3,#2)
}
{
SF_H += sfmpy(SF_H,SF_D):lib // d2: rsqrt
// cool trick: half of 1/sqrt(x) has same mantissa as 1/sqrt(x).
PROD = asl(FRACRAD,SHIFTAMT) // fracrad<<(2+exp1)
}
{
SF_H = and(SF_H,##0x007fffff)
}
{
SF_H = add(SF_H,##0x00800000 - 3)
SHIFTAMT = mux(P_EXP1,#7,#8)
}
{
RECIPEST = asl(SF_H,SHIFTAMT)
SHIFTAMT = mux(P_EXP1,#15-(1+1),#15-(1+0))
}
{
ROOT = mpyu(RECIPEST,PRODHI) // root = mpyu_full(recipest,hi(fracrad<<(2+exp1)))
}
#undef SFSH // r3:2
#undef SF_H // r2
#undef SF_S // r3
#undef S_ONE // r4
#undef SFHALF // r5
#undef SFHALF_SONE // r5:4
#undef SF_D // r6
#undef SF_E // r7
#define HL r3:2
#define LL r5:4
#define HH r7:6
#undef P_EXP1
#define P_CARRY0 p1
#define P_CARRY1 p2
#define P_CARRY2 p3
// Iteration 0
// Maybe we can save a cycle by starting with ERROR=asl(fracrad), then as we multiply
// We can shift and subtract instead of shift and add?
{
ERROR = asl(FRACRAD,#15)
PROD = mpyu(ROOTHI,ROOTHI)
P_CARRY0 = cmp.eq(r0,r0)
}
{
ERROR -= asl(PROD,#15)
PROD = mpyu(ROOTHI,ROOTLO)
P_CARRY1 = cmp.eq(r0,r0)
}
{
ERROR -= lsr(PROD,#16)
P_CARRY2 = cmp.eq(r0,r0)
}
{
ERROR = mpyu(ERRORHI,RECIPEST)
}
{
ROOT += lsr(ERROR,SHIFTAMT)
SHIFTAMT = add(SHIFTAMT,#16)
ERROR = asl(FRACRAD,#31) // for next iter
}
// Iteration 1
{
PROD = mpyu(ROOTHI,ROOTHI)
ERROR -= mpyu(ROOTHI,ROOTLO) // amount is 31, no shift needed
}
{
ERROR -= asl(PROD,#31)
PROD = mpyu(ROOTLO,ROOTLO)
}
{
ERROR -= lsr(PROD,#33)
}
{
ERROR = mpyu(ERRORHI,RECIPEST)
}
{
ROOT += lsr(ERROR,SHIFTAMT)
SHIFTAMT = add(SHIFTAMT,#16)
ERROR = asl(FRACRAD,#47) // for next iter
}
// Iteration 2
{
PROD = mpyu(ROOTHI,ROOTHI)
}
{
ERROR -= asl(PROD,#47)
PROD = mpyu(ROOTHI,ROOTLO)
}
{
ERROR -= asl(PROD,#16) // bidir shr 31-47
PROD = mpyu(ROOTLO,ROOTLO)
}
{
ERROR -= lsr(PROD,#17) // 64-47
}
{
ERROR = mpyu(ERRORHI,RECIPEST)
}
{
ROOT += lsr(ERROR,SHIFTAMT)
}
#undef ERROR
#undef PROD
#undef PRODHI
#undef PRODLO
#define REM_HI r15:14
#define REM_HI_HI r15
#define REM_LO r1:0
#undef RECIPEST
#undef SHIFTAMT
#define TWOROOT_LO r9:8
// Adjust Root
{
HL = mpyu(ROOTHI,ROOTLO)
LL = mpyu(ROOTLO,ROOTLO)
REM_HI = #0
REM_LO = #0
}
{
HL += lsr(LL,#33)
LL += asl(HL,#33)
P_CARRY0 = cmp.eq(r0,r0)
}
{
HH = mpyu(ROOTHI,ROOTHI)
REM_LO = sub(REM_LO,LL,P_CARRY0):carry
TWOROOT_LO = #1
}
{
HH += lsr(HL,#31)
TWOROOT_LO += asl(ROOT,#1)
}
#undef HL
#undef LL
#define REM_HI_TMP r3:2
#define REM_HI_TMP_HI r3
#define REM_LO_TMP r5:4
{
REM_HI = sub(FRACRAD,HH,P_CARRY0):carry
REM_LO_TMP = sub(REM_LO,TWOROOT_LO,P_CARRY1):carry
#undef FRACRAD
#undef HH
#define ZERO r11:10
#define ONE r7:6
ONE = #1
ZERO = #0
}
{
REM_HI_TMP = sub(REM_HI,ZERO,P_CARRY1):carry
ONE = add(ROOT,ONE)
EXP = add(EXP,#-DF_BIAS) // subtract bias --> signed exp
}
{
// If carry set, no borrow: result was still positive
if (P_CARRY1) ROOT = ONE
if (P_CARRY1) REM_LO = REM_LO_TMP
if (P_CARRY1) REM_HI = REM_HI_TMP
}
{
REM_LO_TMP = sub(REM_LO,TWOROOT_LO,P_CARRY2):carry
ONE = #1
EXP = asr(EXP,#1) // divide signed exp by 2
}
{
REM_HI_TMP = sub(REM_HI,ZERO,P_CARRY2):carry
ONE = add(ROOT,ONE)
}
{
if (P_CARRY2) ROOT = ONE
if (P_CARRY2) REM_LO = REM_LO_TMP
// since tworoot <= 2^32, remhi must be zero
#undef REM_HI_TMP
#undef REM_HI_TMP_HI
#define S_ONE r2
#define ADJ r3
S_ONE = #1
}
{
P_TMP = cmp.eq(REM_LO,ZERO) // is the low part zero
if (!P_TMP.new) ROOTLO = or(ROOTLO,S_ONE) // if so, it's exact... hopefully
ADJ = cl0(ROOT)
EXP = add(EXP,#-63)
}
#undef REM_LO
#define RET r1:0
#define RETHI r1
{
RET = convert_ud2df(ROOT) // set up mantissa, maybe set inexact flag
EXP = add(EXP,ADJ) // add back bias
}
{
RETHI += asl(EXP,#DF_MANTBITS-32) // add exponent adjust
jumpr r31
}
#undef REM_LO_TMP
#undef REM_HI_TMP
#undef REM_HI_TMP_HI
#undef REM_LO
#undef REM_HI
#undef TWOROOT_LO
#undef RET
#define A r1:0
#define AH r1
#define AL r1
#undef S_ONE
#define TMP r3:2
#define TMPHI r3
#define TMPLO r2
#undef P_CARRY0
#define P_NEG p1
#define SFHALF r5
#define SFRAD r9
.Lsqrt_abnormal:
{
P_TMP = dfclass(A,#DFCLASS_ZERO) // zero?
if (P_TMP.new) jumpr:t r31
}
{
P_TMP = dfclass(A,#DFCLASS_NAN)
if (P_TMP.new) jump:nt .Lsqrt_nan
}
{
P_TMP = cmp.gt(AH,#-1)
if (!P_TMP.new) jump:nt .Lsqrt_invalid_neg
if (!P_TMP.new) EXP = ##0x7F800001 // sNaN
}
{
P_TMP = dfclass(A,#DFCLASS_INFINITE)
if (P_TMP.new) jumpr:nt r31
}
// If we got here, we're denormal
// prepare to restart
{
A = extractu(A,#DF_MANTBITS,#0) // Extract mantissa
}
{
EXP = add(clb(A),#-DF_EXPBITS) // how much to normalize?
}
{
A = asl(A,EXP) // Shift mantissa
EXP = sub(#1,EXP) // Form exponent
}
{
AH = insert(EXP,#1,#DF_MANTBITS-32) // insert lsb of exponent
}
{
TMP = extractu(A,#SF_MANTBITS+1,#DF_MANTBITS-SF_MANTBITS) // get sf value (mant+exp1)
SFHALF = ##0x3f000004 // form half constant
}
{
SFRAD = or(SFHALF,TMPLO) // form sf value
SFHALF = and(SFHALF,#-16)
jump .Ldenormal_restart // restart
}
.Lsqrt_nan:
{
EXP = convert_df2sf(A) // if sNaN, get invalid
A = #-1 // qNaN
jumpr r31
}
.Lsqrt_invalid_neg:
{
A = convert_sf2df(EXP) // Invalid,NaNval
jumpr r31
}
END(__hexagon_sqrt)
END(__hexagon_sqrtdf2)
|