reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
//===----------------------Hexagon builtin routine ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#define Q6_ALIAS(TAG) .global __qdsp_##TAG ; .set __qdsp_##TAG, __hexagon_##TAG
#define END(TAG) .size TAG,.-TAG

// Double Precision Multiply


#define A r1:0
#define AH r1
#define AL r0
#define B r3:2
#define BH r3
#define BL r2
#define C r5:4
#define CH r5
#define CL r4



#define BTMP r15:14
#define BTMPH r15
#define BTMPL r14

#define ATMP r13:12
#define ATMPH r13
#define ATMPL r12

#define CTMP r11:10
#define CTMPH r11
#define CTMPL r10

#define PP_LL r9:8
#define PP_LL_H r9
#define PP_LL_L r8

#define PP_ODD r7:6
#define PP_ODD_H r7
#define PP_ODD_L r6


#define PP_HH r17:16
#define PP_HH_H r17
#define PP_HH_L r16

#define EXPA r18
#define EXPB r19
#define EXPBA r19:18

#define TMP r28

#define P_TMP p0
#define PROD_NEG p3
#define EXACT p2
#define SWAP p1

#define MANTBITS 52
#define HI_MANTBITS 20
#define EXPBITS 11
#define BIAS 1023
#define STACKSPACE 32

#define ADJUST 4

#define FUDGE 7
#define FUDGE2 3

#ifndef SR_ROUND_OFF
#define SR_ROUND_OFF 22
#endif

	// First, classify for normal values, and abort if abnormal
	//
	// Next, unpack mantissa into 0x1000_0000_0000_0000 + mant<<8
	//
	// Since we know that the 2 MSBs of the H registers is zero, we should never carry
	// the partial products that involve the H registers
	//
	// Try to buy X slots, at the expense of latency if needed
	//
	// We will have PP_HH with the upper bits of the product, PP_LL with the lower
	// PP_HH can have a maximum of 0x03FF_FFFF_FFFF_FFFF or thereabouts
	// PP_HH can have a minimum of 0x0100_0000_0000_0000
	//
	// 0x0100_0000_0000_0000 has EXP of EXPA+EXPB-BIAS
	//
	// We need to align CTMP.
	// If CTMP >> PP, convert PP to 64 bit with sticky, align CTMP, and follow normal add
	// If CTMP << PP align CTMP and add 128 bits.  Then compute sticky
	// If CTMP ~= PP, align CTMP and add 128 bits.  May have massive cancellation.
	//
	// Convert partial product and CTMP to 2's complement prior to addition
	//
	// After we add, we need to normalize into upper 64 bits, then compute sticky.

	.text
	.global __hexagon_fmadf4
        .type __hexagon_fmadf4,@function
	.global __hexagon_fmadf5
        .type __hexagon_fmadf5,@function
	.global fma
	.type fma,@function
	Q6_ALIAS(fmadf5)
	.p2align 5
__hexagon_fmadf4:
__hexagon_fmadf5:
fma:
	{
		P_TMP = dfclass(A,#2)
		P_TMP = dfclass(B,#2)
		ATMP = #0
		BTMP = #0
	}
	{
		ATMP = insert(A,#MANTBITS,#EXPBITS-3)
		BTMP = insert(B,#MANTBITS,#EXPBITS-3)
		PP_ODD_H = ##0x10000000
		allocframe(#STACKSPACE)
	}
	{
		PP_LL = mpyu(ATMPL,BTMPL)
		if (!P_TMP) jump .Lfma_abnormal_ab
		ATMPH = or(ATMPH,PP_ODD_H)
		BTMPH = or(BTMPH,PP_ODD_H)
	}
	{
		P_TMP = dfclass(C,#2)
		if (!P_TMP.new) jump:nt .Lfma_abnormal_c
		CTMP = combine(PP_ODD_H,#0)
		PP_ODD = combine(#0,PP_LL_H)
	}
.Lfma_abnormal_c_restart:
	{
		PP_ODD += mpyu(BTMPL,ATMPH)
		CTMP = insert(C,#MANTBITS,#EXPBITS-3)
		memd(r29+#0) = PP_HH
		memd(r29+#8) = EXPBA
	}
	{
		PP_ODD += mpyu(ATMPL,BTMPH)
		EXPBA = neg(CTMP)
		P_TMP = cmp.gt(CH,#-1)
		TMP = xor(AH,BH)
	}
	{
		EXPA = extractu(AH,#EXPBITS,#HI_MANTBITS)
		EXPB = extractu(BH,#EXPBITS,#HI_MANTBITS)
		PP_HH = combine(#0,PP_ODD_H)
		if (!P_TMP) CTMP = EXPBA
	}
	{
		PP_HH += mpyu(ATMPH,BTMPH)
		PP_LL = combine(PP_ODD_L,PP_LL_L)
#undef PP_ODD
#undef PP_ODD_H
#undef PP_ODD_L
#undef ATMP
#undef ATMPL
#undef ATMPH
#undef BTMP
#undef BTMPL
#undef BTMPH
#define RIGHTLEFTSHIFT r13:12
#define RIGHTSHIFT r13
#define LEFTSHIFT r12

		EXPA = add(EXPA,EXPB)
#undef EXPB
#undef EXPBA
#define EXPC r19
#define EXPCA r19:18
		EXPC = extractu(CH,#EXPBITS,#HI_MANTBITS)
	}
	// PP_HH:PP_LL now has product
	// CTMP is negated
	// EXPA,B,C are extracted
	// We need to negate PP
	// Since we will be adding with carry later, if we need to negate,
	// just invert all bits now, which we can do conditionally and in parallel
#define PP_HH_TMP r15:14
#define PP_LL_TMP r7:6
	{
		EXPA = add(EXPA,#-BIAS+(ADJUST))
		PROD_NEG = !cmp.gt(TMP,#-1)
		PP_LL_TMP = #0
		PP_HH_TMP = #0
	}
	{
		PP_LL_TMP = sub(PP_LL_TMP,PP_LL,PROD_NEG):carry
		P_TMP = !cmp.gt(TMP,#-1)
		SWAP = cmp.gt(EXPC,EXPA)	// If C >> PP
		if (SWAP.new) EXPCA = combine(EXPA,EXPC)
	}
	{
		PP_HH_TMP = sub(PP_HH_TMP,PP_HH,PROD_NEG):carry
		if (P_TMP) PP_LL = PP_LL_TMP
#undef PP_LL_TMP
#define CTMP2 r7:6
#define CTMP2H r7
#define CTMP2L r6
		CTMP2 = #0
		EXPC = sub(EXPA,EXPC)
	}
	{
		if (P_TMP) PP_HH = PP_HH_TMP
		P_TMP = cmp.gt(EXPC,#63)
		if (SWAP) PP_LL = CTMP2
		if (SWAP) CTMP2 = PP_LL
	}
#undef PP_HH_TMP
//#define ONE r15:14
//#define S_ONE r14
#define ZERO r15:14
#define S_ZERO r15
#undef PROD_NEG
#define P_CARRY p3
	{
		if (SWAP) PP_HH = CTMP	// Swap C and PP
		if (SWAP) CTMP = PP_HH
		if (P_TMP) EXPC = add(EXPC,#-64)
		TMP = #63
	}
	{
		// If diff > 63, pre-shift-right by 64...
		if (P_TMP) CTMP2 = CTMP
		TMP = asr(CTMPH,#31)
		RIGHTSHIFT = min(EXPC,TMP)
		LEFTSHIFT = #0
	}
#undef C
#undef CH
#undef CL
#define STICKIES r5:4
#define STICKIESH r5
#define STICKIESL r4
	{
		if (P_TMP) CTMP = combine(TMP,TMP)	// sign extension of pre-shift-right-64
		STICKIES = extract(CTMP2,RIGHTLEFTSHIFT)
		CTMP2 = lsr(CTMP2,RIGHTSHIFT)
		LEFTSHIFT = sub(#64,RIGHTSHIFT)
	}
	{
		ZERO = #0
		TMP = #-2
		CTMP2 |= lsl(CTMP,LEFTSHIFT)
		CTMP = asr(CTMP,RIGHTSHIFT)
	}
	{
		P_CARRY = cmp.gtu(STICKIES,ZERO)	// If we have sticky bits from C shift
		if (P_CARRY.new) CTMP2L = and(CTMP2L,TMP) // make sure adding 1 == OR
#undef ZERO
#define ONE r15:14
#define S_ONE r14
		ONE = #1
		STICKIES = #0
	}
	{
		PP_LL = add(CTMP2,PP_LL,P_CARRY):carry	// use the carry to add the sticky
	}
	{
		PP_HH = add(CTMP,PP_HH,P_CARRY):carry
		TMP = #62
	}
	// PP_HH:PP_LL now holds the sum
	// We may need to normalize left, up to ??? bits.
	//
	// I think that if we have massive cancellation, the range we normalize by
	// is still limited
	{
		LEFTSHIFT = add(clb(PP_HH),#-2)
		if (!cmp.eq(LEFTSHIFT.new,TMP)) jump:t 1f	// all sign bits?
	}
	// We had all sign bits, shift left by 62.
	{
		CTMP = extractu(PP_LL,#62,#2)
		PP_LL = asl(PP_LL,#62)
		EXPA = add(EXPA,#-62)			// And adjust exponent of result
	}
	{
		PP_HH = insert(CTMP,#62,#0)		// Then shift 63
	}
	{
		LEFTSHIFT = add(clb(PP_HH),#-2)
	}
	.falign
1:
	{
		CTMP = asl(PP_HH,LEFTSHIFT)
		STICKIES |= asl(PP_LL,LEFTSHIFT)
		RIGHTSHIFT = sub(#64,LEFTSHIFT)
		EXPA = sub(EXPA,LEFTSHIFT)
	}
	{
		CTMP |= lsr(PP_LL,RIGHTSHIFT)
		EXACT = cmp.gtu(ONE,STICKIES)
		TMP = #BIAS+BIAS-2
	}
	{
		if (!EXACT) CTMPL = or(CTMPL,S_ONE)
		// If EXPA is overflow/underflow, jump to ovf_unf
		P_TMP = !cmp.gt(EXPA,TMP)
		P_TMP = cmp.gt(EXPA,#1)
		if (!P_TMP.new) jump:nt .Lfma_ovf_unf
	}
	{
		// XXX: FIXME: should PP_HH for check of zero be CTMP?
		P_TMP = cmp.gtu(ONE,CTMP)		// is result true zero?
		A = convert_d2df(CTMP)
		EXPA = add(EXPA,#-BIAS-60)
		PP_HH = memd(r29+#0)
	}
	{
		AH += asl(EXPA,#HI_MANTBITS)
		EXPCA = memd(r29+#8)
		if (!P_TMP) dealloc_return		// not zero, return
	}
.Ladd_yields_zero:
	// We had full cancellation.  Return +/- zero (-0 when round-down)
	{
		TMP = USR
		A = #0
	}
	{
		TMP = extractu(TMP,#2,#SR_ROUND_OFF)
		PP_HH = memd(r29+#0)
		EXPCA = memd(r29+#8)
	}
	{
		p0 = cmp.eq(TMP,#2)
		if (p0.new) AH = ##0x80000000
		dealloc_return
	}

#undef RIGHTLEFTSHIFT
#undef RIGHTSHIFT
#undef LEFTSHIFT
#undef CTMP2
#undef CTMP2H
#undef CTMP2L

.Lfma_ovf_unf:
	{
		p0 = cmp.gtu(ONE,CTMP)
		if (p0.new) jump:nt .Ladd_yields_zero
	}
	{
		A = convert_d2df(CTMP)
		EXPA = add(EXPA,#-BIAS-60)
		TMP = EXPA
	}
#define NEW_EXPB r7
#define NEW_EXPA r6
	{
		AH += asl(EXPA,#HI_MANTBITS)
		NEW_EXPB = extractu(AH,#EXPBITS,#HI_MANTBITS)
	}
	{
		NEW_EXPA = add(EXPA,NEW_EXPB)
		PP_HH = memd(r29+#0)
		EXPCA = memd(r29+#8)
#undef PP_HH
#undef PP_HH_H
#undef PP_HH_L
#undef EXPCA
#undef EXPC
#undef EXPA
#undef PP_LL
#undef PP_LL_H
#undef PP_LL_L
#define EXPA r6
#define EXPB r7
#define EXPBA r7:6
#define ATMP r9:8
#define ATMPH r9
#define ATMPL r8
#undef NEW_EXPB
#undef NEW_EXPA
		ATMP = abs(CTMP)
	}
	{
		p0 = cmp.gt(EXPA,##BIAS+BIAS)
		if (p0.new) jump:nt .Lfma_ovf
	}
	{
		p0 = cmp.gt(EXPA,#0)
		if (p0.new) jump:nt .Lpossible_unf
	}
	{
		// TMP has original EXPA.
		// ATMP is corresponding value
		// Normalize ATMP and shift right to correct location
		EXPB = add(clb(ATMP),#-2)		// Amount to left shift to normalize
		EXPA = sub(#1+5,TMP)			// Amount to right shift to denormalize
		p3 = cmp.gt(CTMPH,#-1)
	}
	// Underflow
	// We know that the infinte range exponent should be EXPA
	// CTMP is 2's complement, ATMP is abs(CTMP)
	{
		EXPA = add(EXPA,EXPB)		// how much to shift back right
		ATMP = asl(ATMP,EXPB)		// shift left
		AH = USR
		TMP = #63
	}
	{
		EXPB = min(EXPA,TMP)
		EXPA = #0
		AL = #0x0030
	}
	{
		B = extractu(ATMP,EXPBA)
		ATMP = asr(ATMP,EXPB)
	}
	{
		p0 = cmp.gtu(ONE,B)
		if (!p0.new) ATMPL = or(ATMPL,S_ONE)
		ATMPH = setbit(ATMPH,#HI_MANTBITS+FUDGE2)
	}
	{
		CTMP = neg(ATMP)
		p1 = bitsclr(ATMPL,#(1<<FUDGE2)-1)
		if (!p1.new) AH = or(AH,AL)
		B = #0
	}
	{
		if (p3) CTMP = ATMP
		USR = AH
		TMP = #-BIAS-(MANTBITS+FUDGE2)
	}
	{
		A = convert_d2df(CTMP)
	}
	{
		AH += asl(TMP,#HI_MANTBITS)
		dealloc_return
	}
.Lpossible_unf:
	{
		TMP = ##0x7fefffff
		ATMP = abs(CTMP)
	}
	{
		p0 = cmp.eq(AL,#0)
		p0 = bitsclr(AH,TMP)
		if (!p0.new) dealloc_return:t
		TMP = #0x7fff
	}
	{
		p0 = bitsset(ATMPH,TMP)
		BH = USR
		BL = #0x0030
	}
	{
		if (p0) BH = or(BH,BL)
	}
	{
		USR = BH
	}
	{
		p0 = dfcmp.eq(A,A)
		dealloc_return
	}
.Lfma_ovf:
	{
		TMP = USR
		CTMP = combine(##0x7fefffff,#-1)
		A = CTMP
	}
	{
		ATMP = combine(##0x7ff00000,#0)
		BH = extractu(TMP,#2,#SR_ROUND_OFF)
		TMP = or(TMP,#0x28)
	}
	{
		USR = TMP
		BH ^= lsr(AH,#31)
		BL = BH
	}
	{
		p0 = !cmp.eq(BL,#1)
		p0 = !cmp.eq(BH,#2)
	}
	{
		p0 = dfcmp.eq(ATMP,ATMP)
		if (p0.new) CTMP = ATMP
	}
	{
		A = insert(CTMP,#63,#0)
		dealloc_return
	}
#undef CTMP
#undef CTMPH
#undef CTMPL
#define BTMP r11:10
#define BTMPH r11
#define BTMPL r10

#undef STICKIES
#undef STICKIESH
#undef STICKIESL
#define C r5:4
#define CH r5
#define CL r4

.Lfma_abnormal_ab:
	{
		ATMP = extractu(A,#63,#0)
		BTMP = extractu(B,#63,#0)
		deallocframe
	}
	{
		p3 = cmp.gtu(ATMP,BTMP)
		if (!p3.new) A = B		// sort values
		if (!p3.new) B = A
	}
	{
		p0 = dfclass(A,#0x0f)		// A NaN?
		if (!p0.new) jump:nt .Lnan
		if (!p3) ATMP = BTMP
		if (!p3) BTMP = ATMP
	}
	{
		p1 = dfclass(A,#0x08)		// A is infinity
		p1 = dfclass(B,#0x0e)		// B is nonzero
	}
	{
		p0 = dfclass(A,#0x08)		// a is inf
		p0 = dfclass(B,#0x01)		// b is zero
	}
	{
		if (p1) jump .Lab_inf
		p2 = dfclass(B,#0x01)
	}
	{
		if (p0) jump .Linvalid
		if (p2) jump .Lab_true_zero
		TMP = ##0x7c000000
	}
	// We are left with a normal or subnormal times a subnormal, A > B
	// If A and B are both very small, we will go to a single sticky bit; replace
	// A and B lower 63 bits with 0x0010_0000_0000_0000, which yields equivalent results
	// if A and B might multiply to something bigger, decrease A exp and increase B exp
	// and start over
	{
		p0 = bitsclr(AH,TMP)
		if (p0.new) jump:nt .Lfma_ab_tiny
	}
	{
		TMP = add(clb(BTMP),#-EXPBITS)
	}
	{
		BTMP = asl(BTMP,TMP)
	}
	{
		B = insert(BTMP,#63,#0)
		AH -= asl(TMP,#HI_MANTBITS)
	}
	jump fma

.Lfma_ab_tiny:
	ATMP = combine(##0x00100000,#0)
	{
		A = insert(ATMP,#63,#0)
		B = insert(ATMP,#63,#0)
	}
	jump fma

.Lab_inf:
	{
		B = lsr(B,#63)
		p0 = dfclass(C,#0x10)
	}
	{
		A ^= asl(B,#63)
		if (p0) jump .Lnan
	}
	{
		p1 = dfclass(C,#0x08)
		if (p1.new) jump:nt .Lfma_inf_plus_inf
	}
	// A*B is +/- inf, C is finite.  Return A
	{
		jumpr r31
	}
	.falign
.Lfma_inf_plus_inf:
	{	// adding infinities of different signs is invalid
		p0 = dfcmp.eq(A,C)
		if (!p0.new) jump:nt .Linvalid
	}
	{
		jumpr r31
	}

.Lnan:
	{
		p0 = dfclass(B,#0x10)
		p1 = dfclass(C,#0x10)
		if (!p0.new) B = A
		if (!p1.new) C = A
	}
	{	// find sNaNs
		BH = convert_df2sf(B)
		BL = convert_df2sf(C)
	}
	{
		BH = convert_df2sf(A)
		A = #-1
		jumpr r31
	}

.Linvalid:
	{
		TMP = ##0x7f800001		// sp snan
	}
	{
		A = convert_sf2df(TMP)
		jumpr r31
	}

.Lab_true_zero:
	// B is zero, A is finite number
	{
		p0 = dfclass(C,#0x10)
		if (p0.new) jump:nt .Lnan
		if (p0.new) A = C
	}
	{
		p0 = dfcmp.eq(B,C)		// is C also zero?
		AH = lsr(AH,#31)		// get sign
	}
	{
		BH ^= asl(AH,#31)		// form correctly signed zero in B
		if (!p0) A = C			// If C is not zero, return C
		if (!p0) jumpr r31
	}
	// B has correctly signed zero, C is also zero
.Lzero_plus_zero:
	{
		p0 = cmp.eq(B,C)		// yes, scalar equals.  +0++0 or -0+-0
		if (p0.new) jumpr:t r31
		A = B
	}
	{
		TMP = USR
	}
	{
		TMP = extractu(TMP,#2,#SR_ROUND_OFF)
		A = #0
	}
	{
		p0 = cmp.eq(TMP,#2)
		if (p0.new) AH = ##0x80000000
		jumpr r31
	}
#undef BTMP
#undef BTMPH
#undef BTMPL
#define CTMP r11:10
	.falign
.Lfma_abnormal_c:
	// We know that AB is normal * normal
	// C is not normal: zero, subnormal, inf, or NaN.
	{
		p0 = dfclass(C,#0x10)		// is C NaN?
		if (p0.new) jump:nt .Lnan
		if (p0.new) A = C		// move NaN to A
		deallocframe
	}
	{
		p0 = dfclass(C,#0x08)		// is C inf?
		if (p0.new) A = C		// return C
		if (p0.new) jumpr:nt r31
	}
	// zero or subnormal
	// If we have a zero, and we know AB is normal*normal, we can just call normal multiply
	{
		p0 = dfclass(C,#0x01)		// is C zero?
		if (p0.new) jump:nt __hexagon_muldf3
		TMP = #1
	}
	// Left with: subnormal
	// Adjust C and jump back to restart
	{
		allocframe(#STACKSPACE)		// oops, deallocated above, re-allocate frame
		CTMP = #0
		CH = insert(TMP,#EXPBITS,#HI_MANTBITS)
		jump .Lfma_abnormal_c_restart
	}
END(fma)