reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
//===-- comparesf2.S - Implement single-precision soft-float comparisons --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the following soft-fp_t comparison routines:
//
//   __eqsf2   __gesf2   __unordsf2
//   __lesf2   __gtsf2
//   __ltsf2
//   __nesf2
//
// The semantics of the routines grouped in each column are identical, so there
// is a single implementation for each, with multiple names.
//
// The routines behave as follows:
//
//   __lesf2(a,b) returns -1 if a < b
//                         0 if a == b
//                         1 if a > b
//                         1 if either a or b is NaN
//
//   __gesf2(a,b) returns -1 if a < b
//                         0 if a == b
//                         1 if a > b
//                        -1 if either a or b is NaN
//
//   __unordsf2(a,b) returns 0 if both a and b are numbers
//                           1 if either a or b is NaN
//
// Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
// NaN values.
//
//===----------------------------------------------------------------------===//

#include "../assembly.h"

    .syntax unified
    .text
    DEFINE_CODE_STATE

    .macro COMPARESF2_FUNCTION_BODY handle_nan:req
#if defined(COMPILER_RT_ARMHF_TARGET)
    vmov r0, s0
    vmov r1, s1
#endif
    // Make copies of a and b with the sign bit shifted off the top.  These will
    // be used to detect zeros and NaNs.
#if defined(USE_THUMB_1)
    push    {r6, lr}
    lsls    r2,         r0, #1
    lsls    r3,         r1, #1
#else
    mov     r2,         r0, lsl #1
    mov     r3,         r1, lsl #1
#endif

    // We do the comparison in three stages (ignoring NaN values for the time
    // being).  First, we orr the absolute values of a and b; this sets the Z
    // flag if both a and b are zero (of either sign).  The shift of r3 doesn't
    // effect this at all, but it *does* make sure that the C flag is clear for
    // the subsequent operations.
#if defined(USE_THUMB_1)
    lsrs    r6,     r3, #1
    orrs    r6,     r2
#else
    orrs    r12,    r2, r3, lsr #1
#endif
    // Next, we check if a and b have the same or different signs.  If they have
    // opposite signs, this eor will set the N flag.
#if defined(USE_THUMB_1)
    beq     1f
    movs    r6,     r0
    eors    r6,     r1
1:
#else
    it ne
    eorsne  r12,    r0, r1
#endif

    // If a and b are equal (either both zeros or bit identical; again, we're
    // ignoring NaNs for now), this subtract will zero out r0.  If they have the
    // same sign, the flags are updated as they would be for a comparison of the
    // absolute values of a and b.
#if defined(USE_THUMB_1)
    bmi     1f
    subs    r0,     r2, r3
1:
#else
    it pl
    subspl  r0,     r2, r3
#endif

    // If a is smaller in magnitude than b and both have the same sign, place
    // the negation of the sign of b in r0.  Thus, if both are negative and
    // a > b, this sets r0 to 0; if both are positive and a < b, this sets
    // r0 to -1.
    //
    // This is also done if a and b have opposite signs and are not both zero,
    // because in that case the subtract was not performed and the C flag is
    // still clear from the shift argument in orrs; if a is positive and b
    // negative, this places 0 in r0; if a is negative and b positive, -1 is
    // placed in r0.
#if defined(USE_THUMB_1)
    bhs     1f
    // Here if a and b have the same sign and absA < absB, the result is thus
    // b < 0 ? 1 : -1. Same if a and b have the opposite sign (ignoring Nan).
    movs    r0,         #1
    lsrs    r1,         #31
    bne     LOCAL_LABEL(CHECK_NAN\@)
    negs    r0,         r0
    b       LOCAL_LABEL(CHECK_NAN\@)
1:
#else
    it lo
    mvnlo   r0,         r1, asr #31
#endif

    // If a is greater in magnitude than b and both have the same sign, place
    // the sign of b in r0.  Thus, if both are negative and a < b, -1 is placed
    // in r0, which is the desired result.  Conversely, if both are positive
    // and a > b, zero is placed in r0.
#if defined(USE_THUMB_1)
    bls     1f
    // Here both have the same sign and absA > absB.
    movs    r0,         #1
    lsrs    r1,         #31
    beq     LOCAL_LABEL(CHECK_NAN\@)
    negs    r0, r0
1:
#else
    it hi
    movhi   r0,         r1, asr #31
#endif

    // If you've been keeping track, at this point r0 contains -1 if a < b and
    // 0 if a >= b.  All that remains to be done is to set it to 1 if a > b.
    // If a == b, then the Z flag is set, so we can get the correct final value
    // into r0 by simply or'ing with 1 if Z is clear.
    // For Thumb-1, r0 contains -1 if a < b, 0 if a > b and 0 if a == b.
#if !defined(USE_THUMB_1)
    it ne
    orrne   r0,     r0, #1
#endif

    // Finally, we need to deal with NaNs.  If either argument is NaN, replace
    // the value in r0 with 1.
#if defined(USE_THUMB_1)
LOCAL_LABEL(CHECK_NAN\@):
    movs    r6,         #0xff
    lsls    r6,         #24
    cmp     r2,         r6
    bhi     1f
    cmp     r3,         r6
1:
    bls     2f
    \handle_nan
2:
    pop     {r6, pc}
#else
    cmp     r2,         #0xff000000
    ite ls
    cmpls   r3,         #0xff000000
    \handle_nan
    JMP(lr)
#endif
    .endm

@ int __eqsf2(float a, float b)

    .p2align 2
DEFINE_COMPILERRT_FUNCTION(__eqsf2)

    .macro __eqsf2_handle_nan
#if defined(USE_THUMB_1)
    movs    r0,         #1
#else
    movhi   r0,         #1
#endif
    .endm

COMPARESF2_FUNCTION_BODY __eqsf2_handle_nan

END_COMPILERRT_FUNCTION(__eqsf2)

DEFINE_COMPILERRT_FUNCTION_ALIAS(__lesf2, __eqsf2)
DEFINE_COMPILERRT_FUNCTION_ALIAS(__ltsf2, __eqsf2)
DEFINE_COMPILERRT_FUNCTION_ALIAS(__nesf2, __eqsf2)

#if defined(__ELF__)
// Alias for libgcc compatibility
DEFINE_COMPILERRT_FUNCTION_ALIAS(__cmpsf2, __lesf2)
#endif

@ int __gtsf2(float a, float b)

    .p2align 2
DEFINE_COMPILERRT_FUNCTION(__gtsf2)

    .macro __gtsf2_handle_nan
#if defined(USE_THUMB_1)
    movs    r0,         #1
    negs    r0,         r0
#else
    movhi   r0,         #-1
#endif
    .endm

COMPARESF2_FUNCTION_BODY __gtsf2_handle_nan

END_COMPILERRT_FUNCTION(__gtsf2)

DEFINE_COMPILERRT_FUNCTION_ALIAS(__gesf2, __gtsf2)

@ int __unordsf2(float a, float b)

    .p2align 2
DEFINE_COMPILERRT_FUNCTION(__unordsf2)

#if defined(COMPILER_RT_ARMHF_TARGET)
    vmov    r0,         s0
    vmov    r1,         s1
#endif
    // Return 1 for NaN values, 0 otherwise.
    lsls    r2,         r0, #1
    lsls    r3,         r1, #1
    movs    r0,         #0
#if defined(USE_THUMB_1)
    movs    r1,         #0xff
    lsls    r1,         #24
    cmp     r2,         r1
    bhi     1f
    cmp     r3,         r1
1:
    bls     2f
    movs    r0,         #1
2:
#else
    cmp     r2,         #0xff000000
    ite ls
    cmpls   r3,         #0xff000000
    movhi   r0,         #1
#endif
    JMP(lr)
END_COMPILERRT_FUNCTION(__unordsf2)

#if defined(COMPILER_RT_ARMHF_TARGET)
DEFINE_COMPILERRT_FUNCTION(__aeabi_fcmpun)
	vmov s0, r0
	vmov s1, r1
	b SYMBOL_NAME(__unordsf2)
END_COMPILERRT_FUNCTION(__aeabi_fcmpun)
#else
DEFINE_AEABI_FUNCTION_ALIAS(__aeabi_fcmpun, __unordsf2)
#endif

NO_EXEC_STACK_DIRECTIVE