reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
//===- LoopReroll.cpp - Loop rerolling pass -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements a simple loop reroller.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <map>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "loop-reroll"

STATISTIC(NumRerolledLoops, "Number of rerolled loops");

static cl::opt<unsigned>
NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
                          cl::Hidden,
                          cl::desc("The maximum number of failures to tolerate"
                                   " during fuzzy matching. (default: 400)"));

// This loop re-rolling transformation aims to transform loops like this:
//
// int foo(int a);
// void bar(int *x) {
//   for (int i = 0; i < 500; i += 3) {
//     foo(i);
//     foo(i+1);
//     foo(i+2);
//   }
// }
//
// into a loop like this:
//
// void bar(int *x) {
//   for (int i = 0; i < 500; ++i)
//     foo(i);
// }
//
// It does this by looking for loops that, besides the latch code, are composed
// of isomorphic DAGs of instructions, with each DAG rooted at some increment
// to the induction variable, and where each DAG is isomorphic to the DAG
// rooted at the induction variable (excepting the sub-DAGs which root the
// other induction-variable increments). In other words, we're looking for loop
// bodies of the form:
//
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
// f(%iv)
// %iv.1 = add %iv, 1                <-- a root increment
// f(%iv.1)
// %iv.2 = add %iv, 2                <-- a root increment
// f(%iv.2)
// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
// f(%iv.scale_m_1)
// ...
// %iv.next = add %iv, scale
// %cmp = icmp(%iv, ...)
// br %cmp, header, exit
//
// where each f(i) is a set of instructions that, collectively, are a function
// only of i (and other loop-invariant values).
//
// As a special case, we can also reroll loops like this:
//
// int foo(int);
// void bar(int *x) {
//   for (int i = 0; i < 500; ++i) {
//     x[3*i] = foo(0);
//     x[3*i+1] = foo(0);
//     x[3*i+2] = foo(0);
//   }
// }
//
// into this:
//
// void bar(int *x) {
//   for (int i = 0; i < 1500; ++i)
//     x[i] = foo(0);
// }
//
// in which case, we're looking for inputs like this:
//
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
// %scaled.iv = mul %iv, scale
// f(%scaled.iv)
// %scaled.iv.1 = add %scaled.iv, 1
// f(%scaled.iv.1)
// %scaled.iv.2 = add %scaled.iv, 2
// f(%scaled.iv.2)
// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
// f(%scaled.iv.scale_m_1)
// ...
// %iv.next = add %iv, 1
// %cmp = icmp(%iv, ...)
// br %cmp, header, exit

namespace {

  enum IterationLimits {
    /// The maximum number of iterations that we'll try and reroll.
    IL_MaxRerollIterations = 32,
    /// The bitvector index used by loop induction variables and other
    /// instructions that belong to all iterations.
    IL_All,
    IL_End
  };

  class LoopReroll : public LoopPass {
  public:
    static char ID; // Pass ID, replacement for typeid

    LoopReroll() : LoopPass(ID) {
      initializeLoopRerollPass(*PassRegistry::getPassRegistry());
    }

    bool runOnLoop(Loop *L, LPPassManager &LPM) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<TargetLibraryInfoWrapperPass>();
      getLoopAnalysisUsage(AU);
    }

  protected:
    AliasAnalysis *AA;
    LoopInfo *LI;
    ScalarEvolution *SE;
    TargetLibraryInfo *TLI;
    DominatorTree *DT;
    bool PreserveLCSSA;

    using SmallInstructionVector = SmallVector<Instruction *, 16>;
    using SmallInstructionSet = SmallPtrSet<Instruction *, 16>;

    // Map between induction variable and its increment
    DenseMap<Instruction *, int64_t> IVToIncMap;

    // For loop with multiple induction variable, remember the one used only to
    // control the loop.
    Instruction *LoopControlIV;

    // A chain of isomorphic instructions, identified by a single-use PHI
    // representing a reduction. Only the last value may be used outside the
    // loop.
    struct SimpleLoopReduction {
      SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) {
        assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
        add(L);
      }

      bool valid() const {
        return Valid;
      }

      Instruction *getPHI() const {
        assert(Valid && "Using invalid reduction");
        return Instructions.front();
      }

      Instruction *getReducedValue() const {
        assert(Valid && "Using invalid reduction");
        return Instructions.back();
      }

      Instruction *get(size_t i) const {
        assert(Valid && "Using invalid reduction");
        return Instructions[i+1];
      }

      Instruction *operator [] (size_t i) const { return get(i); }

      // The size, ignoring the initial PHI.
      size_t size() const {
        assert(Valid && "Using invalid reduction");
        return Instructions.size()-1;
      }

      using iterator = SmallInstructionVector::iterator;
      using const_iterator = SmallInstructionVector::const_iterator;

      iterator begin() {
        assert(Valid && "Using invalid reduction");
        return std::next(Instructions.begin());
      }

      const_iterator begin() const {
        assert(Valid && "Using invalid reduction");
        return std::next(Instructions.begin());
      }

      iterator end() { return Instructions.end(); }
      const_iterator end() const { return Instructions.end(); }

    protected:
      bool Valid = false;
      SmallInstructionVector Instructions;

      void add(Loop *L);
    };

    // The set of all reductions, and state tracking of possible reductions
    // during loop instruction processing.
    struct ReductionTracker {
      using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>;

      // Add a new possible reduction.
      void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }

      // Setup to track possible reductions corresponding to the provided
      // rerolling scale. Only reductions with a number of non-PHI instructions
      // that is divisible by the scale are considered. Three instructions sets
      // are filled in:
      //   - A set of all possible instructions in eligible reductions.
      //   - A set of all PHIs in eligible reductions
      //   - A set of all reduced values (last instructions) in eligible
      //     reductions.
      void restrictToScale(uint64_t Scale,
                           SmallInstructionSet &PossibleRedSet,
                           SmallInstructionSet &PossibleRedPHISet,
                           SmallInstructionSet &PossibleRedLastSet) {
        PossibleRedIdx.clear();
        PossibleRedIter.clear();
        Reds.clear();

        for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
          if (PossibleReds[i].size() % Scale == 0) {
            PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
            PossibleRedPHISet.insert(PossibleReds[i].getPHI());

            PossibleRedSet.insert(PossibleReds[i].getPHI());
            PossibleRedIdx[PossibleReds[i].getPHI()] = i;
            for (Instruction *J : PossibleReds[i]) {
              PossibleRedSet.insert(J);
              PossibleRedIdx[J] = i;
            }
          }
      }

      // The functions below are used while processing the loop instructions.

      // Are the two instructions both from reductions, and furthermore, from
      // the same reduction?
      bool isPairInSame(Instruction *J1, Instruction *J2) {
        DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
        if (J1I != PossibleRedIdx.end()) {
          DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
          if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
            return true;
        }

        return false;
      }

      // The two provided instructions, the first from the base iteration, and
      // the second from iteration i, form a matched pair. If these are part of
      // a reduction, record that fact.
      void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
        if (PossibleRedIdx.count(J1)) {
          assert(PossibleRedIdx.count(J2) &&
                 "Recording reduction vs. non-reduction instruction?");

          PossibleRedIter[J1] = 0;
          PossibleRedIter[J2] = i;

          int Idx = PossibleRedIdx[J1];
          assert(Idx == PossibleRedIdx[J2] &&
                 "Recording pair from different reductions?");
          Reds.insert(Idx);
        }
      }

      // The functions below can be called after we've finished processing all
      // instructions in the loop, and we know which reductions were selected.

      bool validateSelected();
      void replaceSelected();

    protected:
      // The vector of all possible reductions (for any scale).
      SmallReductionVector PossibleReds;

      DenseMap<Instruction *, int> PossibleRedIdx;
      DenseMap<Instruction *, int> PossibleRedIter;
      DenseSet<int> Reds;
    };

    // A DAGRootSet models an induction variable being used in a rerollable
    // loop. For example,
    //
    //   x[i*3+0] = y1
    //   x[i*3+1] = y2
    //   x[i*3+2] = y3
    //
    //   Base instruction -> i*3
    //                    +---+----+
    //                   /    |     \
    //               ST[y1]  +1     +2  <-- Roots
    //                        |      |
    //                      ST[y2] ST[y3]
    //
    // There may be multiple DAGRoots, for example:
    //
    //   x[i*2+0] = ...   (1)
    //   x[i*2+1] = ...   (1)
    //   x[i*2+4] = ...   (2)
    //   x[i*2+5] = ...   (2)
    //   x[(i+1234)*2+5678] = ... (3)
    //   x[(i+1234)*2+5679] = ... (3)
    //
    // The loop will be rerolled by adding a new loop induction variable,
    // one for the Base instruction in each DAGRootSet.
    //
    struct DAGRootSet {
      Instruction *BaseInst;
      SmallInstructionVector Roots;

      // The instructions between IV and BaseInst (but not including BaseInst).
      SmallInstructionSet SubsumedInsts;
    };

    // The set of all DAG roots, and state tracking of all roots
    // for a particular induction variable.
    struct DAGRootTracker {
      DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
                     ScalarEvolution *SE, AliasAnalysis *AA,
                     TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
                     bool PreserveLCSSA,
                     DenseMap<Instruction *, int64_t> &IncrMap,
                     Instruction *LoopCtrlIV)
          : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
            PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
            LoopControlIV(LoopCtrlIV) {}

      /// Stage 1: Find all the DAG roots for the induction variable.
      bool findRoots();

      /// Stage 2: Validate if the found roots are valid.
      bool validate(ReductionTracker &Reductions);

      /// Stage 3: Assuming validate() returned true, perform the
      /// replacement.
      /// @param BackedgeTakenCount The backedge-taken count of L.
      void replace(const SCEV *BackedgeTakenCount);

    protected:
      using UsesTy = MapVector<Instruction *, BitVector>;

      void findRootsRecursive(Instruction *IVU,
                              SmallInstructionSet SubsumedInsts);
      bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
      bool collectPossibleRoots(Instruction *Base,
                                std::map<int64_t,Instruction*> &Roots);
      bool validateRootSet(DAGRootSet &DRS);

      bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
      void collectInLoopUserSet(const SmallInstructionVector &Roots,
                                const SmallInstructionSet &Exclude,
                                const SmallInstructionSet &Final,
                                DenseSet<Instruction *> &Users);
      void collectInLoopUserSet(Instruction *Root,
                                const SmallInstructionSet &Exclude,
                                const SmallInstructionSet &Final,
                                DenseSet<Instruction *> &Users);

      UsesTy::iterator nextInstr(int Val, UsesTy &In,
                                 const SmallInstructionSet &Exclude,
                                 UsesTy::iterator *StartI=nullptr);
      bool isBaseInst(Instruction *I);
      bool isRootInst(Instruction *I);
      bool instrDependsOn(Instruction *I,
                          UsesTy::iterator Start,
                          UsesTy::iterator End);
      void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr);

      LoopReroll *Parent;

      // Members of Parent, replicated here for brevity.
      Loop *L;
      ScalarEvolution *SE;
      AliasAnalysis *AA;
      TargetLibraryInfo *TLI;
      DominatorTree *DT;
      LoopInfo *LI;
      bool PreserveLCSSA;

      // The loop induction variable.
      Instruction *IV;

      // Loop step amount.
      int64_t Inc;

      // Loop reroll count; if Inc == 1, this records the scaling applied
      // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
      // If Inc is not 1, Scale = Inc.
      uint64_t Scale;

      // The roots themselves.
      SmallVector<DAGRootSet,16> RootSets;

      // All increment instructions for IV.
      SmallInstructionVector LoopIncs;

      // Map of all instructions in the loop (in order) to the iterations
      // they are used in (or specially, IL_All for instructions
      // used in the loop increment mechanism).
      UsesTy Uses;

      // Map between induction variable and its increment
      DenseMap<Instruction *, int64_t> &IVToIncMap;

      Instruction *LoopControlIV;
    };

    // Check if it is a compare-like instruction whose user is a branch
    bool isCompareUsedByBranch(Instruction *I) {
      auto *TI = I->getParent()->getTerminator();
      if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
        return false;
      return I->hasOneUse() && TI->getOperand(0) == I;
    };

    bool isLoopControlIV(Loop *L, Instruction *IV);
    void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
    void collectPossibleReductions(Loop *L,
           ReductionTracker &Reductions);
    bool reroll(Instruction *IV, Loop *L, BasicBlock *Header,
                const SCEV *BackedgeTakenCount, ReductionTracker &Reductions);
  };

} // end anonymous namespace

char LoopReroll::ID = 0;

INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)

Pass *llvm::createLoopRerollPass() {
  return new LoopReroll;
}

// Returns true if the provided instruction is used outside the given loop.
// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
// non-loop blocks to be outside the loop.
static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
  for (User *U : I->users()) {
    if (!L->contains(cast<Instruction>(U)))
      return true;
  }
  return false;
}

// Check if an IV is only used to control the loop. There are two cases:
// 1. It only has one use which is loop increment, and the increment is only
// used by comparison and the PHI (could has sext with nsw in between), and the
// comparison is only used by branch.
// 2. It is used by loop increment and the comparison, the loop increment is
// only used by the PHI, and the comparison is used only by the branch.
bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
  unsigned IVUses = IV->getNumUses();
  if (IVUses != 2 && IVUses != 1)
    return false;

  for (auto *User : IV->users()) {
    int32_t IncOrCmpUses = User->getNumUses();
    bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));

    // User can only have one or two uses.
    if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
      return false;

    // Case 1
    if (IVUses == 1) {
      // The only user must be the loop increment.
      // The loop increment must have two uses.
      if (IsCompInst || IncOrCmpUses != 2)
        return false;
    }

    // Case 2
    if (IVUses == 2 && IncOrCmpUses != 1)
      return false;

    // The users of the IV must be a binary operation or a comparison
    if (auto *BO = dyn_cast<BinaryOperator>(User)) {
      if (BO->getOpcode() == Instruction::Add) {
        // Loop Increment
        // User of Loop Increment should be either PHI or CMP
        for (auto *UU : User->users()) {
          if (PHINode *PN = dyn_cast<PHINode>(UU)) {
            if (PN != IV)
              return false;
          }
          // Must be a CMP or an ext (of a value with nsw) then CMP
          else {
            Instruction *UUser = dyn_cast<Instruction>(UU);
            // Skip SExt if we are extending an nsw value
            // TODO: Allow ZExt too
            if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() &&
                isa<SExtInst>(UUser))
              UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
            if (!isCompareUsedByBranch(UUser))
              return false;
          }
        }
      } else
        return false;
      // Compare : can only have one use, and must be branch
    } else if (!IsCompInst)
      return false;
  }
  return true;
}

// Collect the list of loop induction variables with respect to which it might
// be possible to reroll the loop.
void LoopReroll::collectPossibleIVs(Loop *L,
                                    SmallInstructionVector &PossibleIVs) {
  BasicBlock *Header = L->getHeader();
  for (BasicBlock::iterator I = Header->begin(),
       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
    if (!isa<PHINode>(I))
      continue;
    if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy())
      continue;

    if (const SCEVAddRecExpr *PHISCEV =
            dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) {
      if (PHISCEV->getLoop() != L)
        continue;
      if (!PHISCEV->isAffine())
        continue;
      auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
      if (IncSCEV) {
        IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue();
        LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV
                          << "\n");

        if (isLoopControlIV(L, &*I)) {
          assert(!LoopControlIV && "Found two loop control only IV");
          LoopControlIV = &(*I);
          LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I
                            << " = " << *PHISCEV << "\n");
        } else
          PossibleIVs.push_back(&*I);
      }
    }
  }
}

// Add the remainder of the reduction-variable chain to the instruction vector
// (the initial PHINode has already been added). If successful, the object is
// marked as valid.
void LoopReroll::SimpleLoopReduction::add(Loop *L) {
  assert(!Valid && "Cannot add to an already-valid chain");

  // The reduction variable must be a chain of single-use instructions
  // (including the PHI), except for the last value (which is used by the PHI
  // and also outside the loop).
  Instruction *C = Instructions.front();
  if (C->user_empty())
    return;

  do {
    C = cast<Instruction>(*C->user_begin());
    if (C->hasOneUse()) {
      if (!C->isBinaryOp())
        return;

      if (!(isa<PHINode>(Instructions.back()) ||
            C->isSameOperationAs(Instructions.back())))
        return;

      Instructions.push_back(C);
    }
  } while (C->hasOneUse());

  if (Instructions.size() < 2 ||
      !C->isSameOperationAs(Instructions.back()) ||
      C->use_empty())
    return;

  // C is now the (potential) last instruction in the reduction chain.
  for (User *U : C->users()) {
    // The only in-loop user can be the initial PHI.
    if (L->contains(cast<Instruction>(U)))
      if (cast<Instruction>(U) != Instructions.front())
        return;
  }

  Instructions.push_back(C);
  Valid = true;
}

// Collect the vector of possible reduction variables.
void LoopReroll::collectPossibleReductions(Loop *L,
  ReductionTracker &Reductions) {
  BasicBlock *Header = L->getHeader();
  for (BasicBlock::iterator I = Header->begin(),
       IE = Header->getFirstInsertionPt(); I != IE; ++I) {
    if (!isa<PHINode>(I))
      continue;
    if (!I->getType()->isSingleValueType())
      continue;

    SimpleLoopReduction SLR(&*I, L);
    if (!SLR.valid())
      continue;

    LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with "
                      << SLR.size() << " chained instructions)\n");
    Reductions.addSLR(SLR);
  }
}

// Collect the set of all users of the provided root instruction. This set of
// users contains not only the direct users of the root instruction, but also
// all users of those users, and so on. There are two exceptions:
//
//   1. Instructions in the set of excluded instructions are never added to the
//   use set (even if they are users). This is used, for example, to exclude
//   including root increments in the use set of the primary IV.
//
//   2. Instructions in the set of final instructions are added to the use set
//   if they are users, but their users are not added. This is used, for
//   example, to prevent a reduction update from forcing all later reduction
//   updates into the use set.
void LoopReroll::DAGRootTracker::collectInLoopUserSet(
  Instruction *Root, const SmallInstructionSet &Exclude,
  const SmallInstructionSet &Final,
  DenseSet<Instruction *> &Users) {
  SmallInstructionVector Queue(1, Root);
  while (!Queue.empty()) {
    Instruction *I = Queue.pop_back_val();
    if (!Users.insert(I).second)
      continue;

    if (!Final.count(I))
      for (Use &U : I->uses()) {
        Instruction *User = cast<Instruction>(U.getUser());
        if (PHINode *PN = dyn_cast<PHINode>(User)) {
          // Ignore "wrap-around" uses to PHIs of this loop's header.
          if (PN->getIncomingBlock(U) == L->getHeader())
            continue;
        }

        if (L->contains(User) && !Exclude.count(User)) {
          Queue.push_back(User);
        }
      }

    // We also want to collect single-user "feeder" values.
    for (User::op_iterator OI = I->op_begin(),
         OIE = I->op_end(); OI != OIE; ++OI) {
      if (Instruction *Op = dyn_cast<Instruction>(*OI))
        if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
            !Final.count(Op))
          Queue.push_back(Op);
    }
  }
}

// Collect all of the users of all of the provided root instructions (combined
// into a single set).
void LoopReroll::DAGRootTracker::collectInLoopUserSet(
  const SmallInstructionVector &Roots,
  const SmallInstructionSet &Exclude,
  const SmallInstructionSet &Final,
  DenseSet<Instruction *> &Users) {
  for (Instruction *Root : Roots)
    collectInLoopUserSet(Root, Exclude, Final, Users);
}

static bool isUnorderedLoadStore(Instruction *I) {
  if (LoadInst *LI = dyn_cast<LoadInst>(I))
    return LI->isUnordered();
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->isUnordered();
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    return !MI->isVolatile();
  return false;
}

/// Return true if IVU is a "simple" arithmetic operation.
/// This is used for narrowing the search space for DAGRoots; only arithmetic
/// and GEPs can be part of a DAGRoot.
static bool isSimpleArithmeticOp(User *IVU) {
  if (Instruction *I = dyn_cast<Instruction>(IVU)) {
    switch (I->getOpcode()) {
    default: return false;
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::Mul:
    case Instruction::Shl:
    case Instruction::AShr:
    case Instruction::LShr:
    case Instruction::GetElementPtr:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
      return true;
    }
  }
  return false;
}

static bool isLoopIncrement(User *U, Instruction *IV) {
  BinaryOperator *BO = dyn_cast<BinaryOperator>(U);

  if ((BO && BO->getOpcode() != Instruction::Add) ||
      (!BO && !isa<GetElementPtrInst>(U)))
    return false;

  for (auto *UU : U->users()) {
    PHINode *PN = dyn_cast<PHINode>(UU);
    if (PN && PN == IV)
      return true;
  }
  return false;
}

bool LoopReroll::DAGRootTracker::
collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
  SmallInstructionVector BaseUsers;

  for (auto *I : Base->users()) {
    ConstantInt *CI = nullptr;

    if (isLoopIncrement(I, IV)) {
      LoopIncs.push_back(cast<Instruction>(I));
      continue;
    }

    // The root nodes must be either GEPs, ORs or ADDs.
    if (auto *BO = dyn_cast<BinaryOperator>(I)) {
      if (BO->getOpcode() == Instruction::Add ||
          BO->getOpcode() == Instruction::Or)
        CI = dyn_cast<ConstantInt>(BO->getOperand(1));
    } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
      Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
      CI = dyn_cast<ConstantInt>(LastOperand);
    }

    if (!CI) {
      if (Instruction *II = dyn_cast<Instruction>(I)) {
        BaseUsers.push_back(II);
        continue;
      } else {
        LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I
                          << "\n");
        return false;
      }
    }

    int64_t V = std::abs(CI->getValue().getSExtValue());
    if (Roots.find(V) != Roots.end())
      // No duplicates, please.
      return false;

    Roots[V] = cast<Instruction>(I);
  }

  // Make sure we have at least two roots.
  if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty()))
    return false;

  // If we found non-loop-inc, non-root users of Base, assume they are
  // for the zeroth root index. This is because "add %a, 0" gets optimized
  // away.
  if (BaseUsers.size()) {
    if (Roots.find(0) != Roots.end()) {
      LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
      return false;
    }
    Roots[0] = Base;
  }

  // Calculate the number of users of the base, or lowest indexed, iteration.
  unsigned NumBaseUses = BaseUsers.size();
  if (NumBaseUses == 0)
    NumBaseUses = Roots.begin()->second->getNumUses();

  // Check that every node has the same number of users.
  for (auto &KV : Roots) {
    if (KV.first == 0)
      continue;
    if (!KV.second->hasNUses(NumBaseUses)) {
      LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
                        << "#Base=" << NumBaseUses
                        << ", #Root=" << KV.second->getNumUses() << "\n");
      return false;
    }
  }

  return true;
}

void LoopReroll::DAGRootTracker::
findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
  // Does the user look like it could be part of a root set?
  // All its users must be simple arithmetic ops.
  if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1))
    return;

  if (I != IV && findRootsBase(I, SubsumedInsts))
    return;

  SubsumedInsts.insert(I);

  for (User *V : I->users()) {
    Instruction *I = cast<Instruction>(V);
    if (is_contained(LoopIncs, I))
      continue;

    if (!isSimpleArithmeticOp(I))
      continue;

    // The recursive call makes a copy of SubsumedInsts.
    findRootsRecursive(I, SubsumedInsts);
  }
}

bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) {
  if (DRS.Roots.empty())
    return false;

  // Consider a DAGRootSet with N-1 roots (so N different values including
  //   BaseInst).
  // Define d = Roots[0] - BaseInst, which should be the same as
  //   Roots[I] - Roots[I-1] for all I in [1..N).
  // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
  //   loop iteration J.
  //
  // Now, For the loop iterations to be consecutive:
  //   D = d * N
  const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
  if (!ADR)
    return false;

  // Check that the first root is evenly spaced.
  unsigned N = DRS.Roots.size() + 1;
  const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR);
  const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
  if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV))
    return false;

  // Check that the remainling roots are evenly spaced.
  for (unsigned i = 1; i < N - 1; ++i) {
    const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]),
                                               SE->getSCEV(DRS.Roots[i-1]));
    if (NewStepSCEV != StepSCEV)
      return false;
  }

  return true;
}

bool LoopReroll::DAGRootTracker::
findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
  // The base of a RootSet must be an AddRec, so it can be erased.
  const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU));
  if (!IVU_ADR || IVU_ADR->getLoop() != L)
    return false;

  std::map<int64_t, Instruction*> V;
  if (!collectPossibleRoots(IVU, V))
    return false;

  // If we didn't get a root for index zero, then IVU must be
  // subsumed.
  if (V.find(0) == V.end())
    SubsumedInsts.insert(IVU);

  // Partition the vector into monotonically increasing indexes.
  DAGRootSet DRS;
  DRS.BaseInst = nullptr;

  SmallVector<DAGRootSet, 16> PotentialRootSets;

  for (auto &KV : V) {
    if (!DRS.BaseInst) {
      DRS.BaseInst = KV.second;
      DRS.SubsumedInsts = SubsumedInsts;
    } else if (DRS.Roots.empty()) {
      DRS.Roots.push_back(KV.second);
    } else if (V.find(KV.first - 1) != V.end()) {
      DRS.Roots.push_back(KV.second);
    } else {
      // Linear sequence terminated.
      if (!validateRootSet(DRS))
        return false;

      // Construct a new DAGRootSet with the next sequence.
      PotentialRootSets.push_back(DRS);
      DRS.BaseInst = KV.second;
      DRS.Roots.clear();
    }
  }

  if (!validateRootSet(DRS))
    return false;

  PotentialRootSets.push_back(DRS);

  RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end());

  return true;
}

bool LoopReroll::DAGRootTracker::findRoots() {
  Inc = IVToIncMap[IV];

  assert(RootSets.empty() && "Unclean state!");
  if (std::abs(Inc) == 1) {
    for (auto *IVU : IV->users()) {
      if (isLoopIncrement(IVU, IV))
        LoopIncs.push_back(cast<Instruction>(IVU));
    }
    findRootsRecursive(IV, SmallInstructionSet());
    LoopIncs.push_back(IV);
  } else {
    if (!findRootsBase(IV, SmallInstructionSet()))
      return false;
  }

  // Ensure all sets have the same size.
  if (RootSets.empty()) {
    LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
    return false;
  }
  for (auto &V : RootSets) {
    if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
      LLVM_DEBUG(
          dbgs()
          << "LRR: Aborting because not all root sets have the same size\n");
      return false;
    }
  }

  Scale = RootSets[0].Roots.size() + 1;

  if (Scale > IL_MaxRerollIterations) {
    LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
                      << "#Found=" << Scale
                      << ", #Max=" << IL_MaxRerollIterations << "\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale
                    << "\n");

  return true;
}

bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
  // Populate the MapVector with all instructions in the block, in order first,
  // so we can iterate over the contents later in perfect order.
  for (auto &I : *L->getHeader()) {
    Uses[&I].resize(IL_End);
  }

  SmallInstructionSet Exclude;
  for (auto &DRS : RootSets) {
    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
    Exclude.insert(DRS.BaseInst);
  }
  Exclude.insert(LoopIncs.begin(), LoopIncs.end());

  for (auto &DRS : RootSets) {
    DenseSet<Instruction*> VBase;
    collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
    for (auto *I : VBase) {
      Uses[I].set(0);
    }

    unsigned Idx = 1;
    for (auto *Root : DRS.Roots) {
      DenseSet<Instruction*> V;
      collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);

      // While we're here, check the use sets are the same size.
      if (V.size() != VBase.size()) {
        LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
        return false;
      }

      for (auto *I : V) {
        Uses[I].set(Idx);
      }
      ++Idx;
    }

    // Make sure our subsumed instructions are remembered too.
    for (auto *I : DRS.SubsumedInsts) {
      Uses[I].set(IL_All);
    }
  }

  // Make sure the loop increments are also accounted for.

  Exclude.clear();
  for (auto &DRS : RootSets) {
    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
    Exclude.insert(DRS.BaseInst);
  }

  DenseSet<Instruction*> V;
  collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
  for (auto *I : V) {
    Uses[I].set(IL_All);
  }

  return true;
}

/// Get the next instruction in "In" that is a member of set Val.
/// Start searching from StartI, and do not return anything in Exclude.
/// If StartI is not given, start from In.begin().
LoopReroll::DAGRootTracker::UsesTy::iterator
LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
                                      const SmallInstructionSet &Exclude,
                                      UsesTy::iterator *StartI) {
  UsesTy::iterator I = StartI ? *StartI : In.begin();
  while (I != In.end() && (I->second.test(Val) == 0 ||
                           Exclude.count(I->first) != 0))
    ++I;
  return I;
}

bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
  for (auto &DRS : RootSets) {
    if (DRS.BaseInst == I)
      return true;
  }
  return false;
}

bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
  for (auto &DRS : RootSets) {
    if (is_contained(DRS.Roots, I))
      return true;
  }
  return false;
}

/// Return true if instruction I depends on any instruction between
/// Start and End.
bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
                                                UsesTy::iterator Start,
                                                UsesTy::iterator End) {
  for (auto *U : I->users()) {
    for (auto It = Start; It != End; ++It)
      if (U == It->first)
        return true;
  }
  return false;
}

static bool isIgnorableInst(const Instruction *I) {
  if (isa<DbgInfoIntrinsic>(I))
    return true;
  const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
  if (!II)
    return false;
  switch (II->getIntrinsicID()) {
    default:
      return false;
    case Intrinsic::annotation:
    case Intrinsic::ptr_annotation:
    case Intrinsic::var_annotation:
    // TODO: the following intrinsics may also be whitelisted:
    //   lifetime_start, lifetime_end, invariant_start, invariant_end
      return true;
  }
  return false;
}

bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
  // We now need to check for equivalence of the use graph of each root with
  // that of the primary induction variable (excluding the roots). Our goal
  // here is not to solve the full graph isomorphism problem, but rather to
  // catch common cases without a lot of work. As a result, we will assume
  // that the relative order of the instructions in each unrolled iteration
  // is the same (although we will not make an assumption about how the
  // different iterations are intermixed). Note that while the order must be
  // the same, the instructions may not be in the same basic block.

  // An array of just the possible reductions for this scale factor. When we
  // collect the set of all users of some root instructions, these reduction
  // instructions are treated as 'final' (their uses are not considered).
  // This is important because we don't want the root use set to search down
  // the reduction chain.
  SmallInstructionSet PossibleRedSet;
  SmallInstructionSet PossibleRedLastSet;
  SmallInstructionSet PossibleRedPHISet;
  Reductions.restrictToScale(Scale, PossibleRedSet,
                             PossibleRedPHISet, PossibleRedLastSet);

  // Populate "Uses" with where each instruction is used.
  if (!collectUsedInstructions(PossibleRedSet))
    return false;

  // Make sure we mark the reduction PHIs as used in all iterations.
  for (auto *I : PossibleRedPHISet) {
    Uses[I].set(IL_All);
  }

  // Make sure we mark loop-control-only PHIs as used in all iterations. See
  // comment above LoopReroll::isLoopControlIV for more information.
  BasicBlock *Header = L->getHeader();
  if (LoopControlIV && LoopControlIV != IV) {
    for (auto *U : LoopControlIV->users()) {
      Instruction *IVUser = dyn_cast<Instruction>(U);
      // IVUser could be loop increment or compare
      Uses[IVUser].set(IL_All);
      for (auto *UU : IVUser->users()) {
        Instruction *UUser = dyn_cast<Instruction>(UU);
        // UUser could be compare, PHI or branch
        Uses[UUser].set(IL_All);
        // Skip SExt
        if (isa<SExtInst>(UUser)) {
          UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
          Uses[UUser].set(IL_All);
        }
        // Is UUser a compare instruction?
        if (UU->hasOneUse()) {
          Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
          if (BI == cast<BranchInst>(Header->getTerminator()))
            Uses[BI].set(IL_All);
        }
      }
    }
  }

  // Make sure all instructions in the loop are in one and only one
  // set.
  for (auto &KV : Uses) {
    if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
      LLVM_DEBUG(
          dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
                 << *KV.first << " (#uses=" << KV.second.count() << ")\n");
      return false;
    }
  }

  LLVM_DEBUG(for (auto &KV
                  : Uses) {
    dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
  });

  for (unsigned Iter = 1; Iter < Scale; ++Iter) {
    // In addition to regular aliasing information, we need to look for
    // instructions from later (future) iterations that have side effects
    // preventing us from reordering them past other instructions with side
    // effects.
    bool FutureSideEffects = false;
    AliasSetTracker AST(*AA);
    // The map between instructions in f(%iv.(i+1)) and f(%iv).
    DenseMap<Value *, Value *> BaseMap;

    // Compare iteration Iter to the base.
    SmallInstructionSet Visited;
    auto BaseIt = nextInstr(0, Uses, Visited);
    auto RootIt = nextInstr(Iter, Uses, Visited);
    auto LastRootIt = Uses.begin();

    while (BaseIt != Uses.end() && RootIt != Uses.end()) {
      Instruction *BaseInst = BaseIt->first;
      Instruction *RootInst = RootIt->first;

      // Skip over the IV or root instructions; only match their users.
      bool Continue = false;
      if (isBaseInst(BaseInst)) {
        Visited.insert(BaseInst);
        BaseIt = nextInstr(0, Uses, Visited);
        Continue = true;
      }
      if (isRootInst(RootInst)) {
        LastRootIt = RootIt;
        Visited.insert(RootInst);
        RootIt = nextInstr(Iter, Uses, Visited);
        Continue = true;
      }
      if (Continue) continue;

      if (!BaseInst->isSameOperationAs(RootInst)) {
        // Last chance saloon. We don't try and solve the full isomorphism
        // problem, but try and at least catch the case where two instructions
        // *of different types* are round the wrong way. We won't be able to
        // efficiently tell, given two ADD instructions, which way around we
        // should match them, but given an ADD and a SUB, we can at least infer
        // which one is which.
        //
        // This should allow us to deal with a greater subset of the isomorphism
        // problem. It does however change a linear algorithm into a quadratic
        // one, so limit the number of probes we do.
        auto TryIt = RootIt;
        unsigned N = NumToleratedFailedMatches;
        while (TryIt != Uses.end() &&
               !BaseInst->isSameOperationAs(TryIt->first) &&
               N--) {
          ++TryIt;
          TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
        }

        if (TryIt == Uses.end() || TryIt == RootIt ||
            instrDependsOn(TryIt->first, RootIt, TryIt)) {
          LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
                            << *BaseInst << " vs. " << *RootInst << "\n");
          return false;
        }

        RootIt = TryIt;
        RootInst = TryIt->first;
      }

      // All instructions between the last root and this root
      // may belong to some other iteration. If they belong to a
      // future iteration, then they're dangerous to alias with.
      //
      // Note that because we allow a limited amount of flexibility in the order
      // that we visit nodes, LastRootIt might be *before* RootIt, in which
      // case we've already checked this set of instructions so we shouldn't
      // do anything.
      for (; LastRootIt < RootIt; ++LastRootIt) {
        Instruction *I = LastRootIt->first;
        if (LastRootIt->second.find_first() < (int)Iter)
          continue;
        if (I->mayWriteToMemory())
          AST.add(I);
        // Note: This is specifically guarded by a check on isa<PHINode>,
        // which while a valid (somewhat arbitrary) micro-optimization, is
        // needed because otherwise isSafeToSpeculativelyExecute returns
        // false on PHI nodes.
        if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) &&
            !isSafeToSpeculativelyExecute(I))
          // Intervening instructions cause side effects.
          FutureSideEffects = true;
      }

      // Make sure that this instruction, which is in the use set of this
      // root instruction, does not also belong to the base set or the set of
      // some other root instruction.
      if (RootIt->second.count() > 1) {
        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
                          << " vs. " << *RootInst << " (prev. case overlap)\n");
        return false;
      }

      // Make sure that we don't alias with any instruction in the alias set
      // tracker. If we do, then we depend on a future iteration, and we
      // can't reroll.
      if (RootInst->mayReadFromMemory())
        for (auto &K : AST) {
          if (K.aliasesUnknownInst(RootInst, *AA)) {
            LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
                              << *BaseInst << " vs. " << *RootInst
                              << " (depends on future store)\n");
            return false;
          }
        }

      // If we've past an instruction from a future iteration that may have
      // side effects, and this instruction might also, then we can't reorder
      // them, and this matching fails. As an exception, we allow the alias
      // set tracker to handle regular (unordered) load/store dependencies.
      if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) &&
                                 !isSafeToSpeculativelyExecute(BaseInst)) ||
                                (!isUnorderedLoadStore(RootInst) &&
                                 !isSafeToSpeculativelyExecute(RootInst)))) {
        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
                          << " vs. " << *RootInst
                          << " (side effects prevent reordering)\n");
        return false;
      }

      // For instructions that are part of a reduction, if the operation is
      // associative, then don't bother matching the operands (because we
      // already know that the instructions are isomorphic, and the order
      // within the iteration does not matter). For non-associative reductions,
      // we do need to match the operands, because we need to reject
      // out-of-order instructions within an iteration!
      // For example (assume floating-point addition), we need to reject this:
      //   x += a[i]; x += b[i];
      //   x += a[i+1]; x += b[i+1];
      //   x += b[i+2]; x += a[i+2];
      bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);

      if (!(InReduction && BaseInst->isAssociative())) {
        bool Swapped = false, SomeOpMatched = false;
        for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
          Value *Op2 = RootInst->getOperand(j);

          // If this is part of a reduction (and the operation is not
          // associatve), then we match all operands, but not those that are
          // part of the reduction.
          if (InReduction)
            if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
              if (Reductions.isPairInSame(RootInst, Op2I))
                continue;

          DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
          if (BMI != BaseMap.end()) {
            Op2 = BMI->second;
          } else {
            for (auto &DRS : RootSets) {
              if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
                Op2 = DRS.BaseInst;
                break;
              }
            }
          }

          if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
            // If we've not already decided to swap the matched operands, and
            // we've not already matched our first operand (note that we could
            // have skipped matching the first operand because it is part of a
            // reduction above), and the instruction is commutative, then try
            // the swapped match.
            if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
                BaseInst->getOperand(!j) == Op2) {
              Swapped = true;
            } else {
              LLVM_DEBUG(dbgs()
                         << "LRR: iteration root match failed at " << *BaseInst
                         << " vs. " << *RootInst << " (operand " << j << ")\n");
              return false;
            }
          }

          SomeOpMatched = true;
        }
      }

      if ((!PossibleRedLastSet.count(BaseInst) &&
           hasUsesOutsideLoop(BaseInst, L)) ||
          (!PossibleRedLastSet.count(RootInst) &&
           hasUsesOutsideLoop(RootInst, L))) {
        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
                          << " vs. " << *RootInst << " (uses outside loop)\n");
        return false;
      }

      Reductions.recordPair(BaseInst, RootInst, Iter);
      BaseMap.insert(std::make_pair(RootInst, BaseInst));

      LastRootIt = RootIt;
      Visited.insert(BaseInst);
      Visited.insert(RootInst);
      BaseIt = nextInstr(0, Uses, Visited);
      RootIt = nextInstr(Iter, Uses, Visited);
    }
    assert(BaseIt == Uses.end() && RootIt == Uses.end() &&
           "Mismatched set sizes!");
  }

  LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV
                    << "\n");

  return true;
}

void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) {
  BasicBlock *Header = L->getHeader();

  // Compute the start and increment for each BaseInst before we start erasing
  // instructions.
  SmallVector<const SCEV *, 8> StartExprs;
  SmallVector<const SCEV *, 8> IncrExprs;
  for (auto &DRS : RootSets) {
    const SCEVAddRecExpr *IVSCEV =
        cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
    StartExprs.push_back(IVSCEV->getStart());
    IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV));
  }

  // Remove instructions associated with non-base iterations.
  for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend();
       J != JE;) {
    unsigned I = Uses[&*J].find_first();
    if (I > 0 && I < IL_All) {
      LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n");
      J++->eraseFromParent();
      continue;
    }

    ++J;
  }

  // Rewrite each BaseInst using SCEV.
  for (size_t i = 0, e = RootSets.size(); i != e; ++i)
    // Insert the new induction variable.
    replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]);

  { // Limit the lifetime of SCEVExpander.
    BranchInst *BI = cast<BranchInst>(Header->getTerminator());
    const DataLayout &DL = Header->getModule()->getDataLayout();
    SCEVExpander Expander(*SE, DL, "reroll");
    auto Zero = SE->getZero(BackedgeTakenCount->getType());
    auto One = SE->getOne(BackedgeTakenCount->getType());
    auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap);
    Value *NewIV =
        Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(),
                               Header->getFirstNonPHIOrDbg());
    // FIXME: This arithmetic can overflow.
    auto TripCount = SE->getAddExpr(BackedgeTakenCount, One);
    auto ScaledTripCount = SE->getMulExpr(
        TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale));
    auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One);
    Value *TakenCount =
        Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(),
                               Header->getFirstNonPHIOrDbg());
    Value *Cond =
        new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond");
    BI->setCondition(Cond);

    if (BI->getSuccessor(1) != Header)
      BI->swapSuccessors();
  }

  SimplifyInstructionsInBlock(Header, TLI);
  DeleteDeadPHIs(Header, TLI);
}

void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS,
                                           const SCEV *Start,
                                           const SCEV *IncrExpr) {
  BasicBlock *Header = L->getHeader();
  Instruction *Inst = DRS.BaseInst;

  const SCEV *NewIVSCEV =
      SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);

  { // Limit the lifetime of SCEVExpander.
    const DataLayout &DL = Header->getModule()->getDataLayout();
    SCEVExpander Expander(*SE, DL, "reroll");
    Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(),
                                          Header->getFirstNonPHIOrDbg());

    for (auto &KV : Uses)
      if (KV.second.find_first() == 0)
        KV.first->replaceUsesOfWith(Inst, NewIV);
  }
}

// Validate the selected reductions. All iterations must have an isomorphic
// part of the reduction chain and, for non-associative reductions, the chain
// entries must appear in order.
bool LoopReroll::ReductionTracker::validateSelected() {
  // For a non-associative reduction, the chain entries must appear in order.
  for (int i : Reds) {
    int PrevIter = 0, BaseCount = 0, Count = 0;
    for (Instruction *J : PossibleReds[i]) {
      // Note that all instructions in the chain must have been found because
      // all instructions in the function must have been assigned to some
      // iteration.
      int Iter = PossibleRedIter[J];
      if (Iter != PrevIter && Iter != PrevIter + 1 &&
          !PossibleReds[i].getReducedValue()->isAssociative()) {
        LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "
                          << J << "\n");
        return false;
      }

      if (Iter != PrevIter) {
        if (Count != BaseCount) {
          LLVM_DEBUG(dbgs()
                     << "LRR: Iteration " << PrevIter << " reduction use count "
                     << Count << " is not equal to the base use count "
                     << BaseCount << "\n");
          return false;
        }

        Count = 0;
      }

      ++Count;
      if (Iter == 0)
        ++BaseCount;

      PrevIter = Iter;
    }
  }

  return true;
}

// For all selected reductions, remove all parts except those in the first
// iteration (and the PHI). Replace outside uses of the reduced value with uses
// of the first-iteration reduced value (in other words, reroll the selected
// reductions).
void LoopReroll::ReductionTracker::replaceSelected() {
  // Fixup reductions to refer to the last instruction associated with the
  // first iteration (not the last).
  for (int i : Reds) {
    int j = 0;
    for (int e = PossibleReds[i].size(); j != e; ++j)
      if (PossibleRedIter[PossibleReds[i][j]] != 0) {
        --j;
        break;
      }

    // Replace users with the new end-of-chain value.
    SmallInstructionVector Users;
    for (User *U : PossibleReds[i].getReducedValue()->users()) {
      Users.push_back(cast<Instruction>(U));
    }

    for (Instruction *User : Users)
      User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
                              PossibleReds[i][j]);
  }
}

// Reroll the provided loop with respect to the provided induction variable.
// Generally, we're looking for a loop like this:
//
// %iv = phi [ (preheader, ...), (body, %iv.next) ]
// f(%iv)
// %iv.1 = add %iv, 1                <-- a root increment
// f(%iv.1)
// %iv.2 = add %iv, 2                <-- a root increment
// f(%iv.2)
// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
// f(%iv.scale_m_1)
// ...
// %iv.next = add %iv, scale
// %cmp = icmp(%iv, ...)
// br %cmp, header, exit
//
// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
// be intermixed with eachother. The restriction imposed by this algorithm is
// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
// etc. be the same.
//
// First, we collect the use set of %iv, excluding the other increment roots.
// This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
// times, having collected the use set of f(%iv.(i+1)), during which we:
//   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
//     the next unmatched instruction in f(%iv.(i+1)).
//   - Ensure that both matched instructions don't have any external users
//     (with the exception of last-in-chain reduction instructions).
//   - Track the (aliasing) write set, and other side effects, of all
//     instructions that belong to future iterations that come before the matched
//     instructions. If the matched instructions read from that write set, then
//     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
//     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
//     if any of these future instructions had side effects (could not be
//     speculatively executed), and so do the matched instructions, when we
//     cannot reorder those side-effect-producing instructions, and rerolling
//     fails.
//
// Finally, we make sure that all loop instructions are either loop increment
// roots, belong to simple latch code, parts of validated reductions, part of
// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
// have been validated), then we reroll the loop.
bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
                        const SCEV *BackedgeTakenCount,
                        ReductionTracker &Reductions) {
  DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
                          IVToIncMap, LoopControlIV);

  if (!DAGRoots.findRoots())
    return false;
  LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV
                    << "\n");

  if (!DAGRoots.validate(Reductions))
    return false;
  if (!Reductions.validateSelected())
    return false;
  // At this point, we've validated the rerolling, and we're committed to
  // making changes!

  Reductions.replaceSelected();
  DAGRoots.replace(BackedgeTakenCount);

  ++NumRerolledLoops;
  return true;
}

bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
  if (skipLoop(L))
    return false;

  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
      *L->getHeader()->getParent());
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);

  BasicBlock *Header = L->getHeader();
  LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %"
                    << Header->getName() << " (" << L->getNumBlocks()
                    << " block(s))\n");

  // For now, we'll handle only single BB loops.
  if (L->getNumBlocks() > 1)
    return false;

  if (!SE->hasLoopInvariantBackedgeTakenCount(L))
    return false;

  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
  LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
  LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount
               << "\n");

  // First, we need to find the induction variable with respect to which we can
  // reroll (there may be several possible options).
  SmallInstructionVector PossibleIVs;
  IVToIncMap.clear();
  LoopControlIV = nullptr;
  collectPossibleIVs(L, PossibleIVs);

  if (PossibleIVs.empty()) {
    LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n");
    return false;
  }

  ReductionTracker Reductions;
  collectPossibleReductions(L, Reductions);
  bool Changed = false;

  // For each possible IV, collect the associated possible set of 'root' nodes
  // (i+1, i+2, etc.).
  for (Instruction *PossibleIV : PossibleIVs)
    if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) {
      Changed = true;
      break;
    }
  LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");

  // Trip count of L has changed so SE must be re-evaluated.
  if (Changed)
    SE->forgetLoop(L);

  return Changed;
}