reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
//===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Instrumentation/BoundsChecking.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdint>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "bounds-checking"

static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap",
                                  cl::desc("Use one trap block per function"));

STATISTIC(ChecksAdded, "Bounds checks added");
STATISTIC(ChecksSkipped, "Bounds checks skipped");
STATISTIC(ChecksUnable, "Bounds checks unable to add");

using BuilderTy = IRBuilder<TargetFolder>;

/// Gets the conditions under which memory accessing instructions will overflow.
///
/// \p Ptr is the pointer that will be read/written, and \p InstVal is either
/// the result from the load or the value being stored. It is used to determine
/// the size of memory block that is touched.
///
/// Returns the condition under which the access will overflow.
static Value *getBoundsCheckCond(Value *Ptr, Value *InstVal,
                                 const DataLayout &DL, TargetLibraryInfo &TLI,
                                 ObjectSizeOffsetEvaluator &ObjSizeEval,
                                 BuilderTy &IRB, ScalarEvolution &SE) {
  uint64_t NeededSize = DL.getTypeStoreSize(InstVal->getType());
  LLVM_DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize)
                    << " bytes\n");

  SizeOffsetEvalType SizeOffset = ObjSizeEval.compute(Ptr);

  if (!ObjSizeEval.bothKnown(SizeOffset)) {
    ++ChecksUnable;
    return nullptr;
  }

  Value *Size   = SizeOffset.first;
  Value *Offset = SizeOffset.second;
  ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size);

  Type *IntTy = DL.getIntPtrType(Ptr->getType());
  Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize);

  auto SizeRange = SE.getUnsignedRange(SE.getSCEV(Size));
  auto OffsetRange = SE.getUnsignedRange(SE.getSCEV(Offset));
  auto NeededSizeRange = SE.getUnsignedRange(SE.getSCEV(NeededSizeVal));

  // three checks are required to ensure safety:
  // . Offset >= 0  (since the offset is given from the base ptr)
  // . Size >= Offset  (unsigned)
  // . Size - Offset >= NeededSize  (unsigned)
  //
  // optimization: if Size >= 0 (signed), skip 1st check
  // FIXME: add NSW/NUW here?  -- we dont care if the subtraction overflows
  Value *ObjSize = IRB.CreateSub(Size, Offset);
  Value *Cmp2 = SizeRange.getUnsignedMin().uge(OffsetRange.getUnsignedMax())
                    ? ConstantInt::getFalse(Ptr->getContext())
                    : IRB.CreateICmpULT(Size, Offset);
  Value *Cmp3 = SizeRange.sub(OffsetRange)
                        .getUnsignedMin()
                        .uge(NeededSizeRange.getUnsignedMax())
                    ? ConstantInt::getFalse(Ptr->getContext())
                    : IRB.CreateICmpULT(ObjSize, NeededSizeVal);
  Value *Or = IRB.CreateOr(Cmp2, Cmp3);
  if ((!SizeCI || SizeCI->getValue().slt(0)) &&
      !SizeRange.getSignedMin().isNonNegative()) {
    Value *Cmp1 = IRB.CreateICmpSLT(Offset, ConstantInt::get(IntTy, 0));
    Or = IRB.CreateOr(Cmp1, Or);
  }

  return Or;
}

/// Adds run-time bounds checks to memory accessing instructions.
///
/// \p Or is the condition that should guard the trap.
///
/// \p GetTrapBB is a callable that returns the trap BB to use on failure.
template <typename GetTrapBBT>
static void insertBoundsCheck(Value *Or, BuilderTy IRB, GetTrapBBT GetTrapBB) {
  // check if the comparison is always false
  ConstantInt *C = dyn_cast_or_null<ConstantInt>(Or);
  if (C) {
    ++ChecksSkipped;
    // If non-zero, nothing to do.
    if (!C->getZExtValue())
      return;
  }
  ++ChecksAdded;

  BasicBlock::iterator SplitI = IRB.GetInsertPoint();
  BasicBlock *OldBB = SplitI->getParent();
  BasicBlock *Cont = OldBB->splitBasicBlock(SplitI);
  OldBB->getTerminator()->eraseFromParent();

  if (C) {
    // If we have a constant zero, unconditionally branch.
    // FIXME: We should really handle this differently to bypass the splitting
    // the block.
    BranchInst::Create(GetTrapBB(IRB), OldBB);
    return;
  }

  // Create the conditional branch.
  BranchInst::Create(GetTrapBB(IRB), Cont, Or, OldBB);
}

static bool addBoundsChecking(Function &F, TargetLibraryInfo &TLI,
                              ScalarEvolution &SE) {
  const DataLayout &DL = F.getParent()->getDataLayout();
  ObjectSizeOpts EvalOpts;
  EvalOpts.RoundToAlign = true;
  ObjectSizeOffsetEvaluator ObjSizeEval(DL, &TLI, F.getContext(), EvalOpts);

  // check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory
  // touching instructions
  SmallVector<std::pair<Instruction *, Value *>, 4> TrapInfo;
  for (Instruction &I : instructions(F)) {
    Value *Or = nullptr;
    BuilderTy IRB(I.getParent(), BasicBlock::iterator(&I), TargetFolder(DL));
    if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
      Or = getBoundsCheckCond(LI->getPointerOperand(), LI, DL, TLI,
                              ObjSizeEval, IRB, SE);
    } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
      Or = getBoundsCheckCond(SI->getPointerOperand(), SI->getValueOperand(),
                              DL, TLI, ObjSizeEval, IRB, SE);
    } else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
      Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getCompareOperand(),
                              DL, TLI, ObjSizeEval, IRB, SE);
    } else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
      Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getValOperand(), DL,
                              TLI, ObjSizeEval, IRB, SE);
    }
    if (Or)
      TrapInfo.push_back(std::make_pair(&I, Or));
  }

  // Create a trapping basic block on demand using a callback. Depending on
  // flags, this will either create a single block for the entire function or
  // will create a fresh block every time it is called.
  BasicBlock *TrapBB = nullptr;
  auto GetTrapBB = [&TrapBB](BuilderTy &IRB) {
    if (TrapBB && SingleTrapBB)
      return TrapBB;

    Function *Fn = IRB.GetInsertBlock()->getParent();
    // FIXME: This debug location doesn't make a lot of sense in the
    // `SingleTrapBB` case.
    auto DebugLoc = IRB.getCurrentDebugLocation();
    IRBuilder<>::InsertPointGuard Guard(IRB);
    TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn);
    IRB.SetInsertPoint(TrapBB);

    auto *F = Intrinsic::getDeclaration(Fn->getParent(), Intrinsic::trap);
    CallInst *TrapCall = IRB.CreateCall(F, {});
    TrapCall->setDoesNotReturn();
    TrapCall->setDoesNotThrow();
    TrapCall->setDebugLoc(DebugLoc);
    IRB.CreateUnreachable();

    return TrapBB;
  };

  // Add the checks.
  for (const auto &Entry : TrapInfo) {
    Instruction *Inst = Entry.first;
    BuilderTy IRB(Inst->getParent(), BasicBlock::iterator(Inst), TargetFolder(DL));
    insertBoundsCheck(Entry.second, IRB, GetTrapBB);
  }

  return !TrapInfo.empty();
}

PreservedAnalyses BoundsCheckingPass::run(Function &F, FunctionAnalysisManager &AM) {
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);

  if (!addBoundsChecking(F, TLI, SE))
    return PreservedAnalyses::all();

  return PreservedAnalyses::none();
}

namespace {
struct BoundsCheckingLegacyPass : public FunctionPass {
  static char ID;

  BoundsCheckingLegacyPass() : FunctionPass(ID) {
    initializeBoundsCheckingLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    return addBoundsChecking(F, TLI, SE);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
  }
};
} // namespace

char BoundsCheckingLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(BoundsCheckingLegacyPass, "bounds-checking",
                      "Run-time bounds checking", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(BoundsCheckingLegacyPass, "bounds-checking",
                    "Run-time bounds checking", false, false)

FunctionPass *llvm::createBoundsCheckingLegacyPass() {
  return new BoundsCheckingLegacyPass();
}