reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
//===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 jump, return, call, and related instructions.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
//  Control Flow Instructions.
//

// Return instructions.
//
// The X86retflag return instructions are variadic because we may add ST0 and
// ST1 arguments when returning values on the x87 stack.
let isTerminator = 1, isReturn = 1, isBarrier = 1,
    hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
  def RETL   : I   <0xC3, RawFrm, (outs), (ins variable_ops),
                    "ret{l}", []>, OpSize32, Requires<[Not64BitMode]>;
  def RETQ   : I   <0xC3, RawFrm, (outs), (ins variable_ops),
                    "ret{q}", []>, OpSize32, Requires<[In64BitMode]>;
  def RETW   : I   <0xC3, RawFrm, (outs), (ins),
                    "ret{w}", []>, OpSize16;
  def RETIL  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
                    "ret{l}\t$amt", []>, OpSize32, Requires<[Not64BitMode]>;
  def RETIQ  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
                    "ret{q}\t$amt", []>, OpSize32, Requires<[In64BitMode]>;
  def RETIW  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
                    "ret{w}\t$amt", []>, OpSize16;
  def LRETL  : I   <0xCB, RawFrm, (outs), (ins),
                    "{l}ret{l|f}", []>, OpSize32;
  def LRETQ  : RI  <0xCB, RawFrm, (outs), (ins),
                    "{l}ret{|f}q", []>, Requires<[In64BitMode]>;
  def LRETW  : I   <0xCB, RawFrm, (outs), (ins),
                    "{l}ret{w|f}", []>, OpSize16;
  def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
                    "{l}ret{l|f}\t$amt", []>, OpSize32;
  def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
                    "{l}ret{|f}q\t$amt", []>, Requires<[In64BitMode]>;
  def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
                    "{l}ret{w|f}\t$amt", []>, OpSize16;

  // The machine return from interrupt instruction, but sometimes we need to
  // perform a post-epilogue stack adjustment. Codegen emits the pseudo form
  // which expands to include an SP adjustment if necessary.
  def IRET16 : I   <0xcf, RawFrm, (outs), (ins), "iret{w}", []>,
               OpSize16;
  def IRET32 : I   <0xcf, RawFrm, (outs), (ins), "iret{l|d}", []>, OpSize32;
  def IRET64 : RI  <0xcf, RawFrm, (outs), (ins), "iretq", []>, Requires<[In64BitMode]>;
  let isCodeGenOnly = 1 in
  def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>;
  def RET  : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retflag timm:$adj)]>;
}

// Unconditional branches.
let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
  def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
                       "jmp\t$dst", [(br bb:$dst)]>;
  let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
    def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst),
                          "jmp\t$dst", []>, OpSize16;
    def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst),
                          "jmp\t$dst", []>, OpSize32;
  }
}

// Conditional Branches.
let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump],
    isCodeGenOnly = 1, ForceDisassemble = 1 in {
  def JCC_1 : Ii8PCRel <0x70, AddCCFrm, (outs),
                        (ins brtarget8:$dst, ccode:$cond),
                        "j${cond}\t$dst",
                        [(X86brcond bb:$dst, timm:$cond, EFLAGS)]>;
  let hasSideEffects = 0 in {
    def JCC_2 : Ii16PCRel<0x80, AddCCFrm, (outs),
                          (ins brtarget16:$dst, ccode:$cond),
                          "j${cond}\t$dst",
                          []>, OpSize16, TB;
    def JCC_4 : Ii32PCRel<0x80, AddCCFrm, (outs),
                          (ins brtarget32:$dst, ccode:$cond),
                          "j${cond}\t$dst",
                          []>, TB, OpSize32;
  }
}

def : InstAlias<"jo\t$dst",  (JCC_1 brtarget8:$dst,  0), 0>;
def : InstAlias<"jno\t$dst", (JCC_1 brtarget8:$dst,  1), 0>;
def : InstAlias<"jb\t$dst",  (JCC_1 brtarget8:$dst,  2), 0>;
def : InstAlias<"jae\t$dst", (JCC_1 brtarget8:$dst,  3), 0>;
def : InstAlias<"je\t$dst",  (JCC_1 brtarget8:$dst,  4), 0>;
def : InstAlias<"jne\t$dst", (JCC_1 brtarget8:$dst,  5), 0>;
def : InstAlias<"jbe\t$dst", (JCC_1 brtarget8:$dst,  6), 0>;
def : InstAlias<"ja\t$dst",  (JCC_1 brtarget8:$dst,  7), 0>;
def : InstAlias<"js\t$dst",  (JCC_1 brtarget8:$dst,  8), 0>;
def : InstAlias<"jns\t$dst", (JCC_1 brtarget8:$dst,  9), 0>;
def : InstAlias<"jp\t$dst",  (JCC_1 brtarget8:$dst, 10), 0>;
def : InstAlias<"jnp\t$dst", (JCC_1 brtarget8:$dst, 11), 0>;
def : InstAlias<"jl\t$dst",  (JCC_1 brtarget8:$dst, 12), 0>;
def : InstAlias<"jge\t$dst", (JCC_1 brtarget8:$dst, 13), 0>;
def : InstAlias<"jle\t$dst", (JCC_1 brtarget8:$dst, 14), 0>;
def : InstAlias<"jg\t$dst",  (JCC_1 brtarget8:$dst, 15), 0>;

// jcx/jecx/jrcx instructions.
let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in {
  // These are the 32-bit versions of this instruction for the asmparser.  In
  // 32-bit mode, the address size prefix is jcxz and the unprefixed version is
  // jecxz.
  let Uses = [CX] in
    def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
                        "jcxz\t$dst", []>, AdSize16, Requires<[Not64BitMode]>;
  let Uses = [ECX] in
    def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
                        "jecxz\t$dst", []>, AdSize32;

  let Uses = [RCX] in
    def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
                         "jrcxz\t$dst", []>, AdSize64, Requires<[In64BitMode]>;
}

// Indirect branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
  def JMP16r     : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst",
                     [(brind GR16:$dst)]>, Requires<[Not64BitMode]>,
                     OpSize16, Sched<[WriteJump]>;
  def JMP16m     : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst",
                     [(brind (loadi16 addr:$dst))]>, Requires<[Not64BitMode]>,
                     OpSize16, Sched<[WriteJumpLd]>;

  def JMP32r     : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
                     [(brind GR32:$dst)]>, Requires<[Not64BitMode]>,
                     OpSize32, Sched<[WriteJump]>;
  def JMP32m     : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
                     [(brind (loadi32 addr:$dst))]>, Requires<[Not64BitMode]>,
                     OpSize32, Sched<[WriteJumpLd]>;

  def JMP64r     : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
                     [(brind GR64:$dst)]>, Requires<[In64BitMode]>,
                     Sched<[WriteJump]>;
  def JMP64m     : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
                     [(brind (loadi64 addr:$dst))]>, Requires<[In64BitMode]>,
                     Sched<[WriteJumpLd]>;

  // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
  // These are switched from TAILJMPr/m64_REX in MCInstLower.
  let isCodeGenOnly = 1, hasREX_WPrefix = 1 in {
    def JMP64r_REX : I<0xFF, MRM4r, (outs), (ins GR64:$dst),
                       "rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJump]>;
    let mayLoad = 1 in
    def JMP64m_REX : I<0xFF, MRM4m, (outs), (ins i64mem:$dst),
                       "rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJumpLd]>;

  }

  // Non-tracking jumps for IBT, use with caution.
  let isCodeGenOnly = 1 in {
    def JMP16r_NT : I<0xFF, MRM4r, (outs), (ins GR16 : $dst), "jmp{w}\t{*}$dst",
                      [(X86NoTrackBrind GR16 : $dst)]>, Requires<[Not64BitMode]>,
                      OpSize16, Sched<[WriteJump]>, NOTRACK;

    def JMP16m_NT : I<0xFF, MRM4m, (outs), (ins i16mem : $dst), "jmp{w}\t{*}$dst",
                      [(X86NoTrackBrind (loadi16 addr : $dst))]>,
                      Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>,
                      NOTRACK;

    def JMP32r_NT : I<0xFF, MRM4r, (outs), (ins GR32 : $dst), "jmp{l}\t{*}$dst",
                      [(X86NoTrackBrind GR32 : $dst)]>, Requires<[Not64BitMode]>,
                      OpSize32, Sched<[WriteJump]>, NOTRACK;
    def JMP32m_NT : I<0xFF, MRM4m, (outs), (ins i32mem : $dst), "jmp{l}\t{*}$dst",
                      [(X86NoTrackBrind (loadi32 addr : $dst))]>,
                      Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>,
                      NOTRACK;

    def JMP64r_NT : I<0xFF, MRM4r, (outs), (ins GR64 : $dst), "jmp{q}\t{*}$dst",
                      [(X86NoTrackBrind GR64 : $dst)]>, Requires<[In64BitMode]>,
                      Sched<[WriteJump]>, NOTRACK;
    def JMP64m_NT : I<0xFF, MRM4m, (outs), (ins i64mem : $dst), "jmp{q}\t{*}$dst",
                      [(X86NoTrackBrind(loadi64 addr : $dst))]>,
                      Requires<[In64BitMode]>, Sched<[WriteJumpLd]>, NOTRACK;
  }

  let Predicates = [Not64BitMode], AsmVariantName = "att" in {
    def FARJMP16i  : Iseg16<0xEA, RawFrmImm16, (outs),
                            (ins i16imm:$off, i16imm:$seg),
                            "ljmp{w}\t$seg, $off", []>,
                            OpSize16, Sched<[WriteJump]>;
    def FARJMP32i  : Iseg32<0xEA, RawFrmImm16, (outs),
                            (ins i32imm:$off, i16imm:$seg),
                            "ljmp{l}\t$seg, $off", []>,
                            OpSize32, Sched<[WriteJump]>;
  }
  def FARJMP64   : RI<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
                      "ljmp{q}\t{*}$dst", []>, Sched<[WriteJump]>, Requires<[In64BitMode]>;

  let AsmVariantName = "att" in
  def FARJMP16m  : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
                     "ljmp{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
  def FARJMP32m  : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
                     "{l}jmp{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
}

// Loop instructions
let SchedRW = [WriteJump] in {
def LOOP   : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>;
def LOOPE  : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>;
def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>;
}

//===----------------------------------------------------------------------===//
//  Call Instructions...
//
let isCall = 1 in
  // All calls clobber the non-callee saved registers. ESP is marked as
  // a use to prevent stack-pointer assignments that appear immediately
  // before calls from potentially appearing dead. Uses for argument
  // registers are added manually.
  let Uses = [ESP, SSP] in {
    def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
                           (outs), (ins i32imm_pcrel:$dst),
                           "call{l}\t$dst", []>, OpSize32,
                      Requires<[Not64BitMode]>, Sched<[WriteJump]>;
    let hasSideEffects = 0 in
      def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
                             (outs), (ins i16imm_pcrel:$dst),
                             "call{w}\t$dst", []>, OpSize16,
                        Sched<[WriteJump]>;
    def CALL16r     : I<0xFF, MRM2r, (outs), (ins GR16:$dst),
                        "call{w}\t{*}$dst", [(X86call GR16:$dst)]>,
                      OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
    def CALL16m     : I<0xFF, MRM2m, (outs), (ins i16mem:$dst),
                        "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))]>,
                        OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
                        Sched<[WriteJumpLd]>;
    def CALL32r     : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
                        "call{l}\t{*}$dst", [(X86call GR32:$dst)]>, OpSize32,
                        Requires<[Not64BitMode,NotUseRetpolineIndirectCalls]>,
                        Sched<[WriteJump]>;
    def CALL32m     : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
                        "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))]>,
                        OpSize32,
                        Requires<[Not64BitMode,FavorMemIndirectCall,
                                  NotUseRetpolineIndirectCalls]>,
                        Sched<[WriteJumpLd]>;

    // Non-tracking calls for IBT, use with caution.
    let isCodeGenOnly = 1 in {
      def CALL16r_NT : I<0xFF, MRM2r, (outs), (ins GR16 : $dst),
                        "call{w}\t{*}$dst",[(X86NoTrackCall GR16 : $dst)]>,
                        OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
      def CALL16m_NT : I<0xFF, MRM2m, (outs), (ins i16mem : $dst),
                        "call{w}\t{*}$dst",[(X86NoTrackCall(loadi16 addr : $dst))]>,
                        OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
                        Sched<[WriteJumpLd]>, NOTRACK;
      def CALL32r_NT : I<0xFF, MRM2r, (outs), (ins GR32 : $dst),
                        "call{l}\t{*}$dst",[(X86NoTrackCall GR32 : $dst)]>,
                        OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
      def CALL32m_NT : I<0xFF, MRM2m, (outs), (ins i32mem : $dst),
                        "call{l}\t{*}$dst",[(X86NoTrackCall(loadi32 addr : $dst))]>,
                        OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall]>,
                        Sched<[WriteJumpLd]>, NOTRACK;
    }

    let Predicates = [Not64BitMode], AsmVariantName = "att" in {
      def FARCALL16i  : Iseg16<0x9A, RawFrmImm16, (outs),
                               (ins i16imm:$off, i16imm:$seg),
                               "lcall{w}\t$seg, $off", []>,
                               OpSize16, Sched<[WriteJump]>;
      def FARCALL32i  : Iseg32<0x9A, RawFrmImm16, (outs),
                               (ins i32imm:$off, i16imm:$seg),
                               "lcall{l}\t$seg, $off", []>,
                               OpSize32, Sched<[WriteJump]>;
    }

    def FARCALL16m  : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
                        "lcall{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
    def FARCALL32m  : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
                        "{l}call{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
  }


// Tail call stuff.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
    isCodeGenOnly = 1, Uses = [ESP, SSP] in {
  def TCRETURNdi : PseudoI<(outs), (ins i32imm_pcrel:$dst, i32imm:$offset),
                           []>, Sched<[WriteJump]>, NotMemoryFoldable;
  def TCRETURNri : PseudoI<(outs), (ins ptr_rc_tailcall:$dst, i32imm:$offset),
                           []>, Sched<[WriteJump]>, NotMemoryFoldable;
  let mayLoad = 1 in
  def TCRETURNmi : PseudoI<(outs), (ins i32mem_TC:$dst, i32imm:$offset),
                           []>, Sched<[WriteJumpLd]>;

  def TAILJMPd : PseudoI<(outs), (ins i32imm_pcrel:$dst),
                         []>, Sched<[WriteJump]>;

  def TAILJMPr : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
                         []>, Sched<[WriteJump]>;
  let mayLoad = 1 in
  def TAILJMPm : PseudoI<(outs), (ins i32mem_TC:$dst),
                         []>, Sched<[WriteJumpLd]>;
}

// Conditional tail calls are similar to the above, but they are branches
// rather than barriers, and they use EFLAGS.
let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
    isCodeGenOnly = 1, SchedRW = [WriteJump] in
  let Uses = [ESP, EFLAGS, SSP] in {
  def TCRETURNdicc : PseudoI<(outs),
                     (ins i32imm_pcrel:$dst, i32imm:$offset, i32imm:$cond), []>;

  // This gets substituted to a conditional jump instruction in MC lowering.
  def TAILJMPd_CC : PseudoI<(outs), (ins i32imm_pcrel:$dst, i32imm:$cond), []>;
}


//===----------------------------------------------------------------------===//
//  Call Instructions...
//

// RSP is marked as a use to prevent stack-pointer assignments that appear
// immediately before calls from potentially appearing dead. Uses for argument
// registers are added manually.
let isCall = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in {
  // NOTE: this pattern doesn't match "X86call imm", because we do not know
  // that the offset between an arbitrary immediate and the call will fit in
  // the 32-bit pcrel field that we have.
  def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
                        (outs), (ins i64i32imm_pcrel:$dst),
                        "call{q}\t$dst", []>, OpSize32,
                      Requires<[In64BitMode]>;
  def CALL64r       : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
                        "call{q}\t{*}$dst", [(X86call GR64:$dst)]>,
                      Requires<[In64BitMode,NotUseRetpolineIndirectCalls]>;
  def CALL64m       : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
                        "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>,
                      Requires<[In64BitMode,FavorMemIndirectCall,
                                NotUseRetpolineIndirectCalls]>;

  // Non-tracking calls for IBT, use with caution.
  let isCodeGenOnly = 1 in {
    def CALL64r_NT : I<0xFF, MRM2r, (outs), (ins GR64 : $dst),
                      "call{q}\t{*}$dst",[(X86NoTrackCall GR64 : $dst)]>,
                      Requires<[In64BitMode]>, NOTRACK;
    def CALL64m_NT : I<0xFF, MRM2m, (outs), (ins i64mem : $dst),
                       "call{q}\t{*}$dst",
                       [(X86NoTrackCall(loadi64 addr : $dst))]>,
                       Requires<[In64BitMode,FavorMemIndirectCall]>, NOTRACK;
  }

  def FARCALL64   : RI<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
                       "lcall{q}\t{*}$dst", []>;
}

let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
    isCodeGenOnly = 1, Uses = [RSP, SSP] in {
  def TCRETURNdi64   : PseudoI<(outs),
                               (ins i64i32imm_pcrel:$dst, i32imm:$offset),
                               []>, Sched<[WriteJump]>;
  def TCRETURNri64   : PseudoI<(outs),
                               (ins ptr_rc_tailcall:$dst, i32imm:$offset),
                               []>, Sched<[WriteJump]>, NotMemoryFoldable;
  let mayLoad = 1 in
  def TCRETURNmi64   : PseudoI<(outs),
                               (ins i64mem_TC:$dst, i32imm:$offset),
                               []>, Sched<[WriteJumpLd]>, NotMemoryFoldable;

  def TAILJMPd64 : PseudoI<(outs), (ins i64i32imm_pcrel:$dst),
                           []>, Sched<[WriteJump]>;

  def TAILJMPr64 : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
                           []>, Sched<[WriteJump]>;

  let mayLoad = 1 in
  def TAILJMPm64 : PseudoI<(outs), (ins i64mem_TC:$dst),
                           []>, Sched<[WriteJumpLd]>;

  // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
  let hasREX_WPrefix = 1 in {
    def TAILJMPr64_REX : PseudoI<(outs), (ins ptr_rc_tailcall:$dst),
                                 []>, Sched<[WriteJump]>;

    let mayLoad = 1 in
    def TAILJMPm64_REX : PseudoI<(outs), (ins i64mem_TC:$dst),
                                 []>, Sched<[WriteJumpLd]>;
  }
}

let isPseudo = 1, isCall = 1, isCodeGenOnly = 1,
    Uses = [RSP, SSP],
    usesCustomInserter = 1,
    SchedRW = [WriteJump] in {
  def RETPOLINE_CALL32 :
    PseudoI<(outs), (ins GR32:$dst), [(X86call GR32:$dst)]>,
            Requires<[Not64BitMode,UseRetpolineIndirectCalls]>;

  def RETPOLINE_CALL64 :
    PseudoI<(outs), (ins GR64:$dst), [(X86call GR64:$dst)]>,
            Requires<[In64BitMode,UseRetpolineIndirectCalls]>;

  // Retpoline variant of indirect tail calls.
  let isTerminator = 1, isReturn = 1, isBarrier = 1 in {
    def RETPOLINE_TCRETURN64 :
      PseudoI<(outs), (ins GR64:$dst, i32imm:$offset), []>;
    def RETPOLINE_TCRETURN32 :
      PseudoI<(outs), (ins GR32:$dst, i32imm:$offset), []>;
  }
}

// Conditional tail calls are similar to the above, but they are branches
// rather than barriers, and they use EFLAGS.
let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
    isCodeGenOnly = 1, SchedRW = [WriteJump] in
  let Uses = [RSP, EFLAGS, SSP] in {
  def TCRETURNdi64cc : PseudoI<(outs),
                           (ins i64i32imm_pcrel:$dst, i32imm:$offset,
                            i32imm:$cond), []>;

  // This gets substituted to a conditional jump instruction in MC lowering.
  def TAILJMPd64_CC : PseudoI<(outs),
                              (ins i64i32imm_pcrel:$dst, i32imm:$cond), []>;
}