reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Class definitions
//===----------------------------------------------------------------------===//

class ImmediateAsmOperand<string name>
  : AsmOperandClass {
  let Name = name;
  let RenderMethod = "addImmOperands";
}
class ImmediateTLSAsmOperand<string name>
  : AsmOperandClass {
  let Name = name;
  let RenderMethod = "addImmTLSOperands";
}

class ImmediateOp<ValueType vt, string asmop> : Operand<vt> {
  let PrintMethod = "print"##asmop##"Operand";
  let DecoderMethod = "decode"##asmop##"Operand";
  let ParserMatchClass = !cast<AsmOperandClass>(asmop);
}

class ImmOpWithPattern<ValueType vt, string asmop, code pred, SDNodeXForm xform,
      SDNode ImmNode = imm> :
  ImmediateOp<vt, asmop>, PatLeaf<(vt ImmNode), pred, xform>;

// class ImmediatePatLeaf<ValueType vt, code pred,
//       SDNodeXForm xform, SDNode ImmNode>
//   : PatLeaf<(vt ImmNode), pred, xform>;


// Constructs both a DAG pattern and instruction operand for an immediate
// of type VT.  PRED returns true if a node is acceptable and XFORM returns
// the operand value associated with the node.  ASMOP is the name of the
// associated asm operand, and also forms the basis of the asm print method.
multiclass Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop> {
  // def "" : ImmediateOp<vt, asmop>,
  //          PatLeaf<(vt imm), pred, xform>;
  def "" : ImmOpWithPattern<vt, asmop, pred, xform>;

//  def _timm : PatLeaf<(vt timm), pred, xform>;
  def _timm : ImmOpWithPattern<vt, asmop, pred, xform, timm>;
}

// Constructs an asm operand for a PC-relative address.  SIZE says how
// many bits there are.
class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
  let PredicateMethod = "isImm";
  let ParserMethod = "parsePCRel"##size;
}
class PCRelTLSAsmOperand<string size>
  : ImmediateTLSAsmOperand<"PCRelTLS"##size> {
  let PredicateMethod = "isImmTLS";
  let ParserMethod = "parsePCRelTLS"##size;
}

// Constructs an operand for a PC-relative address with address type VT.
// ASMOP is the associated asm operand.
class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
  let PrintMethod = "printPCRelOperand";
  let ParserMatchClass = asmop;
}
class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
  let PrintMethod = "printPCRelTLSOperand";
  let ParserMatchClass = asmop;
}

// Constructs both a DAG pattern and instruction operand for a PC-relative
// address with address size VT.  SELF is the name of the operand and
// ASMOP is the associated asm operand.
class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
  : ComplexPattern<vt, 1, "selectPCRelAddress",
                   [z_pcrel_wrapper, z_pcrel_offset]>,
    PCRelOperand<vt, asmop> {
  let MIOperandInfo = (ops !cast<Operand>(self));
}

// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
// is "".
class AddressAsmOperand<string format, string bitsize, string dispsize,
                        string length = "">
  : AsmOperandClass {
  let Name = format##bitsize##"Disp"##dispsize##length;
  let ParserMethod = "parse"##format##bitsize;
  let RenderMethod = "add"##format##"Operands";
}

// Constructs an instruction operand for an addressing mode.  FORMAT,
// BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
// AddressAsmOperand.  OPERANDS is a list of individual operands
// (base register, displacement, etc.).
class AddressOperand<string bitsize, string dispsize, string length,
                     string format, dag operands>
  : Operand<!cast<ValueType>("i"##bitsize)> {
  let PrintMethod = "print"##format##"Operand";
  let EncoderMethod = "get"##format##dispsize##length##"Encoding";
  let DecoderMethod =
    "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
  let MIOperandInfo = operands;
  let ParserMatchClass =
    !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
}

// Constructs both a DAG pattern and instruction operand for an addressing mode.
// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
// AddressAsmOperand.  OPERANDS is a list of NUMOPS individual operands
// (base register, displacement, etc.).  SELTYPE is the type of the memory
// operand for selection purposes; sometimes we want different selection
// choices for the same underlying addressing mode.  SUFFIX is similarly
// a suffix appended to the displacement for selection purposes;
// e.g. we want to reject small 20-bit displacements if a 12-bit form
// also exists, but we want to accept them otherwise.
class AddressingMode<string seltype, string bitsize, string dispsize,
                     string suffix, string length, int numops, string format,
                     dag operands>
  : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
                   "select"##seltype##dispsize##suffix##length,
                   [add, sub, or, frameindex, z_adjdynalloc]>,
    AddressOperand<bitsize, dispsize, length, format, operands>;

// An addressing mode with a base and displacement but no index.
class BDMode<string type, string bitsize, string dispsize, string suffix>
  : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
                        !cast<Operand>("disp"##dispsize##"imm"##bitsize))>;

// An addressing mode with a base, displacement and index.
class BDXMode<string type, string bitsize, string dispsize, string suffix>
  : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
                        !cast<Operand>("disp"##dispsize##"imm"##bitsize),
                        !cast<RegisterOperand>("ADDR"##bitsize))>;

// A BDMode paired with an immediate length operand of LENSIZE bits.
class BDLMode<string type, string bitsize, string dispsize, string suffix,
              string lensize>
  : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
                   "BDLAddr",
                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
                        !cast<Operand>("disp"##dispsize##"imm"##bitsize),
                        !cast<Operand>("imm"##bitsize))>;

// A BDMode paired with a register length operand.
class BDRMode<string type, string bitsize, string dispsize, string suffix>
  : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDRAddr",
                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
                        !cast<Operand>("disp"##dispsize##"imm"##bitsize),
                        !cast<RegisterOperand>("GR"##bitsize))>;

// An addressing mode with a base, displacement and a vector index.
class BDVMode<string bitsize, string dispsize>
  : AddressOperand<bitsize, dispsize, "", "BDVAddr",
                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
                        !cast<Operand>("disp"##dispsize##"imm"##bitsize),
                        !cast<RegisterOperand>("VR128"))>;

//===----------------------------------------------------------------------===//
// Extracting immediate operands from nodes
// These all create MVT::i64 nodes to ensure the value is not sign-extended
// when converted from an SDNode to a MachineOperand later on.
//===----------------------------------------------------------------------===//

// Bits 0-15 (counting from the lsb).
def LL16 : SDNodeXForm<imm, [{
  uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

// Bits 16-31 (counting from the lsb).
def LH16 : SDNodeXForm<imm, [{
  uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

// Bits 32-47 (counting from the lsb).
def HL16 : SDNodeXForm<imm, [{
  uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

// Bits 48-63 (counting from the lsb).
def HH16 : SDNodeXForm<imm, [{
  uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

// Low 32 bits.
def LF32 : SDNodeXForm<imm, [{
  uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

// High 32 bits.
def HF32 : SDNodeXForm<imm, [{
  uint64_t Value = N->getZExtValue() >> 32;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

// Negated variants.
def NEGLH16 : SDNodeXForm<imm, [{
  uint64_t Value = (-N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

def NEGLF32 : SDNodeXForm<imm, [{
  uint64_t Value = -N->getZExtValue() & 0x00000000FFFFFFFFULL;
  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
}]>;

// Truncate an immediate to a 8-bit signed quantity.
def SIMM8 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 8-bit unsigned quantity.
def UIMM8 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 8-bit unsigned quantity and mask off low bit.
def UIMM8EVEN : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 12-bit unsigned quantity.
def UIMM12 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 16-bit signed quantity.
def SIMM16 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Negate and then truncate an immediate to a 16-bit signed quantity.
def NEGSIMM16 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(int16_t(-N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 16-bit unsigned quantity.
def UIMM16 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 32-bit signed quantity.
def SIMM32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Negate and then truncate an immediate to a 32-bit unsigned quantity.
def NEGSIMM32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(int32_t(-N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 32-bit unsigned quantity.
def UIMM32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Negate and then truncate an immediate to a 32-bit unsigned quantity.
def NEGUIMM32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N),
                                   MVT::i64);
}]>;

// Truncate an immediate to a 48-bit unsigned quantity.
def UIMM48 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(uint64_t(N->getZExtValue()) & 0xffffffffffff,
                                   SDLoc(N), MVT::i64);
}]>;

//===----------------------------------------------------------------------===//
// Immediate asm operands.
//===----------------------------------------------------------------------===//

def U1Imm  : ImmediateAsmOperand<"U1Imm">;
def U2Imm  : ImmediateAsmOperand<"U2Imm">;
def U3Imm  : ImmediateAsmOperand<"U3Imm">;
def U4Imm  : ImmediateAsmOperand<"U4Imm">;
def U6Imm  : ImmediateAsmOperand<"U6Imm">;
def S8Imm  : ImmediateAsmOperand<"S8Imm">;
def U8Imm  : ImmediateAsmOperand<"U8Imm">;
def U12Imm : ImmediateAsmOperand<"U12Imm">;
def S16Imm : ImmediateAsmOperand<"S16Imm">;
def U16Imm : ImmediateAsmOperand<"U16Imm">;
def S32Imm : ImmediateAsmOperand<"S32Imm">;
def U32Imm : ImmediateAsmOperand<"U32Imm">;
def U48Imm : ImmediateAsmOperand<"U48Imm">;

//===----------------------------------------------------------------------===//
// i32 immediates
//===----------------------------------------------------------------------===//

// Immediates for the lower and upper 16 bits of an i32, with the other
// bits of the i32 being zero.
defm imm32ll16 : Immediate<i32, [{
  return SystemZ::isImmLL(N->getZExtValue());
}], LL16, "U16Imm">;

defm imm32lh16 : Immediate<i32, [{
  return SystemZ::isImmLH(N->getZExtValue());
}], LH16, "U16Imm">;

// Immediates for the lower and upper 16 bits of an i32, with the other
// bits of the i32 being one.
defm imm32ll16c : Immediate<i32, [{
  return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
}], LL16, "U16Imm">;

defm imm32lh16c : Immediate<i32, [{
  return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
}], LH16, "U16Imm">;

// Short immediates
defm imm32zx1 : Immediate<i32, [{
  return isUInt<1>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U1Imm">;

defm imm32zx2 : Immediate<i32, [{
  return isUInt<2>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U2Imm">;

defm imm32zx3 : Immediate<i32, [{
  return isUInt<3>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U3Imm">;

defm imm32zx4 : Immediate<i32, [{
  return isUInt<4>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U4Imm">;

// Note: this enforces an even value during code generation only.
// When used from the assembler, any 4-bit value is allowed.
defm imm32zx4even : Immediate<i32, [{
  return isUInt<4>(N->getZExtValue());
}], UIMM8EVEN, "U4Imm">;

defm imm32zx6 : Immediate<i32, [{
  return isUInt<6>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U6Imm">;

defm imm32sx8 : Immediate<i32, [{
  return isInt<8>(N->getSExtValue());
}], SIMM8, "S8Imm">;

defm imm32zx8 : Immediate<i32, [{
  return isUInt<8>(N->getZExtValue());
}], UIMM8, "U8Imm">;

defm imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;

defm imm32zx12 : Immediate<i32, [{
  return isUInt<12>(N->getZExtValue());
}], UIMM12, "U12Imm">;

defm imm32sx16 : Immediate<i32, [{
  return isInt<16>(N->getSExtValue());
}], SIMM16, "S16Imm">;

defm imm32sx16n : Immediate<i32, [{
  return isInt<16>(-N->getSExtValue());
}], NEGSIMM16, "S16Imm">;

defm imm32zx16 : Immediate<i32, [{
  return isUInt<16>(N->getZExtValue());
}], UIMM16, "U16Imm">;

defm imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
defm imm32zx16trunc : Immediate<i32, [{}], UIMM16, "U16Imm">;

// Full 32-bit immediates.  we need both signed and unsigned versions
// because the assembler is picky.  E.g. AFI requires signed operands
// while NILF requires unsigned ones.
defm simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
defm uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;

defm simm32n : Immediate<i32, [{
  return isInt<32>(-N->getSExtValue());
}], NEGSIMM32, "S32Imm">;

def imm32 : ImmLeaf<i32, [{}]>;

//===----------------------------------------------------------------------===//
// 64-bit immediates
//===----------------------------------------------------------------------===//

// Immediates for 16-bit chunks of an i64, with the other bits of the
// i32 being zero.
defm imm64ll16 : Immediate<i64, [{
  return SystemZ::isImmLL(N->getZExtValue());
}], LL16, "U16Imm">;

defm imm64lh16 : Immediate<i64, [{
  return SystemZ::isImmLH(N->getZExtValue());
}], LH16, "U16Imm">;

defm imm64hl16 : Immediate<i64, [{
  return SystemZ::isImmHL(N->getZExtValue());
}], HL16, "U16Imm">;

defm imm64hh16 : Immediate<i64, [{
  return SystemZ::isImmHH(N->getZExtValue());
}], HH16, "U16Imm">;

// Immediates for 16-bit chunks of an i64, with the other bits of the
// i32 being one.
defm imm64ll16c : Immediate<i64, [{
  return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
}], LL16, "U16Imm">;

defm imm64lh16c : Immediate<i64, [{
  return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
}], LH16, "U16Imm">;

defm imm64hl16c : Immediate<i64, [{
  return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
}], HL16, "U16Imm">;

defm imm64hh16c : Immediate<i64, [{
  return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
}], HH16, "U16Imm">;

// Immediates for the lower and upper 32 bits of an i64, with the other
// bits of the i32 being zero.
defm imm64lf32 : Immediate<i64, [{
  return SystemZ::isImmLF(N->getZExtValue());
}], LF32, "U32Imm">;

defm imm64hf32 : Immediate<i64, [{
  return SystemZ::isImmHF(N->getZExtValue());
}], HF32, "U32Imm">;

// Immediates for the lower and upper 32 bits of an i64, with the other
// bits of the i32 being one.
defm imm64lf32c : Immediate<i64, [{
  return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
}], LF32, "U32Imm">;

defm imm64hf32c : Immediate<i64, [{
  return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
}], HF32, "U32Imm">;

// Negated immediates that fit LF32 or LH16.
defm imm64lh16n : Immediate<i64, [{
  return SystemZ::isImmLH(uint64_t(-N->getZExtValue()));
}], NEGLH16, "U16Imm">;

defm imm64lf32n : Immediate<i64, [{
  return SystemZ::isImmLF(uint64_t(-N->getZExtValue()));
}], NEGLF32, "U32Imm">;

// Short immediates.
defm imm64sx8 : Immediate<i64, [{
  return isInt<8>(N->getSExtValue());
}], SIMM8, "S8Imm">;

defm imm64zx8 : Immediate<i64, [{
  return isUInt<8>(N->getSExtValue());
}], UIMM8, "U8Imm">;

defm imm64sx16 : Immediate<i64, [{
  return isInt<16>(N->getSExtValue());
}], SIMM16, "S16Imm">;

defm imm64sx16n : Immediate<i64, [{
  return isInt<16>(-N->getSExtValue());
}], NEGSIMM16, "S16Imm">;

defm imm64zx16 : Immediate<i64, [{
  return isUInt<16>(N->getZExtValue());
}], UIMM16, "U16Imm">;

defm imm64sx32 : Immediate<i64, [{
  return isInt<32>(N->getSExtValue());
}], SIMM32, "S32Imm">;

defm imm64sx32n : Immediate<i64, [{
  return isInt<32>(-N->getSExtValue());
}], NEGSIMM32, "S32Imm">;

defm imm64zx32 : Immediate<i64, [{
  return isUInt<32>(N->getZExtValue());
}], UIMM32, "U32Imm">;

defm imm64zx32n : Immediate<i64, [{
  return isUInt<32>(-N->getSExtValue());
}], NEGUIMM32, "U32Imm">;

defm imm64zx48 : Immediate<i64, [{
  return isUInt<64>(N->getZExtValue());
}], UIMM48, "U48Imm">;

def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;

//===----------------------------------------------------------------------===//
// Floating-point immediates
//===----------------------------------------------------------------------===//

// Floating-point zero.
def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;

// Floating point negative zero.
def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;

//===----------------------------------------------------------------------===//
// Symbolic address operands
//===----------------------------------------------------------------------===//

// PC-relative asm operands.
def PCRel12 : PCRelAsmOperand<"12">;
def PCRel16 : PCRelAsmOperand<"16">;
def PCRel24 : PCRelAsmOperand<"24">;
def PCRel32 : PCRelAsmOperand<"32">;
def PCRelTLS16 : PCRelTLSAsmOperand<"16">;
def PCRelTLS32 : PCRelTLSAsmOperand<"32">;

// PC-relative offsets of a basic block.  The offset is sign-extended
// and multiplied by 2.
def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
  let EncoderMethod = "getPC16DBLEncoding";
  let DecoderMethod = "decodePC16DBLBranchOperand";
}
def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
  let EncoderMethod = "getPC32DBLEncoding";
  let DecoderMethod = "decodePC32DBLBranchOperand";
}

// Variants of brtarget for use with branch prediction preload.
def brtarget12bpp : PCRelOperand<OtherVT, PCRel12> {
  let EncoderMethod = "getPC12DBLBPPEncoding";
  let DecoderMethod = "decodePC12DBLBranchOperand";
}
def brtarget16bpp : PCRelOperand<OtherVT, PCRel16> {
  let EncoderMethod = "getPC16DBLBPPEncoding";
  let DecoderMethod = "decodePC16DBLBranchOperand";
}
def brtarget24bpp : PCRelOperand<OtherVT, PCRel24> {
  let EncoderMethod = "getPC24DBLBPPEncoding";
  let DecoderMethod = "decodePC24DBLBranchOperand";
}

// Variants of brtarget16/32 with an optional additional TLS symbol.
// These are used to annotate calls to __tls_get_offset.
def tlssym : Operand<i64> { }
def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> {
  let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym);
  let EncoderMethod = "getPC16DBLTLSEncoding";
  let DecoderMethod = "decodePC16DBLBranchOperand";
}
def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> {
  let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym);
  let EncoderMethod = "getPC32DBLTLSEncoding";
  let DecoderMethod = "decodePC32DBLBranchOperand";
}

// A PC-relative offset of a global value.  The offset is sign-extended
// and multiplied by 2.
def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
  let EncoderMethod = "getPC32DBLEncoding";
  let DecoderMethod = "decodePC32DBLOperand";
}

//===----------------------------------------------------------------------===//
// Addressing modes
//===----------------------------------------------------------------------===//

// 12-bit displacement operands.
def disp12imm32 : Operand<i32>;
def disp12imm64 : Operand<i64>;

// 20-bit displacement operands.
def disp20imm32 : Operand<i32>;
def disp20imm64 : Operand<i64>;

def BDAddr32Disp12      : AddressAsmOperand<"BDAddr",   "32", "12">;
def BDAddr32Disp20      : AddressAsmOperand<"BDAddr",   "32", "20">;
def BDAddr64Disp12      : AddressAsmOperand<"BDAddr",   "64", "12">;
def BDAddr64Disp20      : AddressAsmOperand<"BDAddr",   "64", "20">;
def BDXAddr64Disp12     : AddressAsmOperand<"BDXAddr",  "64", "12">;
def BDXAddr64Disp20     : AddressAsmOperand<"BDXAddr",  "64", "20">;
def BDLAddr64Disp12Len4 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len4">;
def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len8">;
def BDRAddr64Disp12     : AddressAsmOperand<"BDRAddr",  "64", "12">;
def BDVAddr64Disp12     : AddressAsmOperand<"BDVAddr",  "64", "12">;

// DAG patterns and operands for addressing modes.  Each mode has
// the form <type><range><group>[<len>] where:
//
// <type> is one of:
//   shift    : base + displacement (32-bit)
//   bdaddr   : base + displacement
//   mviaddr  : like bdaddr, but reject cases with a natural index
//   bdxaddr  : base + displacement + index
//   laaddr   : like bdxaddr, but used for Load Address operations
//   dynalloc : base + displacement + index + ADJDYNALLOC
//   bdladdr  : base + displacement with a length field
//   bdvaddr  : base + displacement with a vector index
//
// <range> is one of:
//   12       : the displacement is an unsigned 12-bit value
//   20       : the displacement is a signed 20-bit value
//
// <group> is one of:
//   pair     : used when there is an equivalent instruction with the opposite
//              range value (12 or 20)
//   only     : used when there is no equivalent instruction with the opposite
//              range value
//
// <len> is one of:
//
//   <empty>  : there is no length field
//   len8     : the length field is 8 bits, with a range of [1, 0x100].
def shift12only       : BDMode <"BDAddr",   "32", "12", "Only">;
def shift20only       : BDMode <"BDAddr",   "32", "20", "Only">;
def bdaddr12only      : BDMode <"BDAddr",   "64", "12", "Only">;
def bdaddr12pair      : BDMode <"BDAddr",   "64", "12", "Pair">;
def bdaddr20only      : BDMode <"BDAddr",   "64", "20", "Only">;
def bdaddr20pair      : BDMode <"BDAddr",   "64", "20", "Pair">;
def mviaddr12pair     : BDMode <"MVIAddr",  "64", "12", "Pair">;
def mviaddr20pair     : BDMode <"MVIAddr",  "64", "20", "Pair">;
def bdxaddr12only     : BDXMode<"BDXAddr",  "64", "12", "Only">;
def bdxaddr12pair     : BDXMode<"BDXAddr",  "64", "12", "Pair">;
def bdxaddr20only     : BDXMode<"BDXAddr",  "64", "20", "Only">;
def bdxaddr20only128  : BDXMode<"BDXAddr",  "64", "20", "Only128">;
def bdxaddr20pair     : BDXMode<"BDXAddr",  "64", "20", "Pair">;
def dynalloc12only    : BDXMode<"DynAlloc", "64", "12", "Only">;
def laaddr12pair      : BDXMode<"LAAddr",   "64", "12", "Pair">;
def laaddr20pair      : BDXMode<"LAAddr",   "64", "20", "Pair">;
def bdladdr12onlylen4 : BDLMode<"BDLAddr",  "64", "12", "Only", "4">;
def bdladdr12onlylen8 : BDLMode<"BDLAddr",  "64", "12", "Only", "8">;
def bdraddr12only     : BDRMode<"BDRAddr",  "64", "12", "Only">;
def bdvaddr12only     : BDVMode<            "64", "12">;

//===----------------------------------------------------------------------===//
// Miscellaneous
//===----------------------------------------------------------------------===//

// A 4-bit condition-code mask.
def cond4 : PatLeaf<(i32 timm), [{ return (N->getZExtValue() < 16); }]>,
            Operand<i32> {
  let PrintMethod = "printCond4Operand";
}