reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
//==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// TODO: Most floating-point instructions (except for simple moves and the
// like) can raise exceptions -- should they have hasSideEffects=1 ?

//===----------------------------------------------------------------------===//
// Select instructions
//===----------------------------------------------------------------------===//

// C's ?: operator for floating-point operands.
let Predicates = [FeatureVector] in {
  def SelectVR32 : SelectWrapper<f32, VR32>;
  def SelectVR64 : SelectWrapper<f64, VR64>;
}
def SelectF32  : SelectWrapper<f32, FP32>;
def SelectF64  : SelectWrapper<f64, FP64>;
let Predicates = [FeatureNoVectorEnhancements1] in
  def SelectF128 : SelectWrapper<f128, FP128>;
let Predicates = [FeatureVectorEnhancements1] in
  def SelectVR128 : SelectWrapper<f128, VR128>;

defm CondStoreF32 : CondStores<FP32, simple_store,
                               simple_load, bdxaddr20only>;
defm CondStoreF64 : CondStores<FP64, simple_store,
                               simple_load, bdxaddr20only>;

//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//

// Load zero.
let isAsCheapAsAMove = 1, isMoveImm = 1 in {
  def LZER : InherentRRE<"lzer", 0xB374, FP32,  fpimm0>;
  def LZDR : InherentRRE<"lzdr", 0xB375, FP64,  fpimm0>;
  def LZXR : InherentRRE<"lzxr", 0xB376, FP128, fpimm0>;
}

// Moves between two floating-point registers.
def LER : UnaryRR <"ler", 0x38,   null_frag, FP32,  FP32>;
def LDR : UnaryRR <"ldr", 0x28,   null_frag, FP64,  FP64>;
def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>;

// For z13 we prefer LDR over LER to avoid partial register dependencies.
let isCodeGenOnly = 1 in
  def LDR32 : UnaryRR<"ldr", 0x28, null_frag, FP32, FP32>;

// Moves between two floating-point registers that also set the condition
// codes.
let Uses = [FPC], mayRaiseFPException = 1,
    Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
  defm LTEBR : LoadAndTestRRE<"ltebr", 0xB302, FP32>;
  defm LTDBR : LoadAndTestRRE<"ltdbr", 0xB312, FP64>;
  defm LTXBR : LoadAndTestRRE<"ltxbr", 0xB342, FP128>;
}
// Note that LTxBRCompare is not available if we have vector support,
// since load-and-test instructions will partially clobber the target
// (vector) register.
let Predicates = [FeatureNoVector] in {
  defm : CompareZeroFP<LTEBRCompare, FP32>;
  defm : CompareZeroFP<LTDBRCompare, FP64>;
  defm : CompareZeroFP<LTXBRCompare, FP128>;
}

// Use a normal load-and-test for compare against zero in case of
// vector support (via a pseudo to simplify instruction selection).
let Uses = [FPC], mayRaiseFPException = 1,
    Defs = [CC], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in {
  def LTEBRCompare_VecPseudo : Pseudo<(outs), (ins FP32:$R1, FP32:$R2), []>;
  def LTDBRCompare_VecPseudo : Pseudo<(outs), (ins FP64:$R1, FP64:$R2), []>;
  def LTXBRCompare_VecPseudo : Pseudo<(outs), (ins FP128:$R1, FP128:$R2), []>;
}
let Predicates = [FeatureVector] in {
  defm : CompareZeroFP<LTEBRCompare_VecPseudo, FP32>;
  defm : CompareZeroFP<LTDBRCompare_VecPseudo, FP64>;
}
let Predicates = [FeatureVector, FeatureNoVectorEnhancements1] in
  defm : CompareZeroFP<LTXBRCompare_VecPseudo, FP128>;

// Moves between 64-bit integer and floating-point registers.
def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>;
def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>;

// fcopysign with an FP32 result.
let isCodeGenOnly = 1 in {
  def CPSDRss : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP32>;
  def CPSDRsd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP64>;
}

// The sign of an FP128 is in the high register.
let Predicates = [FeatureNoVectorEnhancements1] in
  def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 FP128:$src2)))),
            (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
let Predicates = [FeatureVectorEnhancements1] in
  def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 VR128:$src2)))),
            (CPSDRsd FP32:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_h64))>;

// fcopysign with an FP64 result.
let isCodeGenOnly = 1 in
  def CPSDRds : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP32>;
def CPSDRdd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP64>;

// The sign of an FP128 is in the high register.
let Predicates = [FeatureNoVectorEnhancements1] in
  def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 FP128:$src2)))),
            (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
let Predicates = [FeatureVectorEnhancements1] in
  def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 VR128:$src2)))),
            (CPSDRdd FP64:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_h64))>;

// fcopysign with an FP128 result.  Use "upper" as the high half and leave
// the low half as-is.
class CopySign128<RegisterOperand cls, dag upper>
  : Pat<(fcopysign FP128:$src1, cls:$src2),
        (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>;

let Predicates = [FeatureNoVectorEnhancements1] in {
  def : CopySign128<FP32,  (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64),
                                    FP32:$src2)>;
  def : CopySign128<FP64,  (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
                                    FP64:$src2)>;
  def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
                                    (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
}

defm LoadStoreF32  : MVCLoadStore<load, f32,  MVCSequence, 4>;
defm LoadStoreF64  : MVCLoadStore<load, f64,  MVCSequence, 8>;
defm LoadStoreF128 : MVCLoadStore<load, f128, MVCSequence, 16>;

//===----------------------------------------------------------------------===//
// Load instructions
//===----------------------------------------------------------------------===//

let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
  defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>;
  defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>;

  // For z13 we prefer LDE over LE to avoid partial register dependencies.
  let isCodeGenOnly = 1 in
    def LDE32 : UnaryRXE<"lde", 0xED24, null_frag, FP32, 4>;

  // These instructions are split after register allocation, so we don't
  // want a custom inserter.
  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src),
                     [(set FP128:$dst, (load bdxaddr20only128:$src))]>;
  }
}

//===----------------------------------------------------------------------===//
// Store instructions
//===----------------------------------------------------------------------===//

let SimpleBDXStore = 1, mayStore = 1 in {
  defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>;
  defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>;

  // These instructions are split after register allocation, so we don't
  // want a custom inserter.
  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst),
                     [(store FP128:$src, bdxaddr20only128:$dst)]>;
  }
}

//===----------------------------------------------------------------------===//
// Conversion instructions
//===----------------------------------------------------------------------===//

// Convert floating-point values to narrower representations, rounding
// according to the current mode.  The destination of LEXBR and LDXBR
// is a 128-bit value, but only the first register of the pair is used.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def LEDBR : UnaryRRE<"ledbr", 0xB344, any_fpround, FP32, FP64>;
  def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>;
  def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>;

  def LEDBRA : TernaryRRFe<"ledbra", 0xB344, FP32,  FP64>,
               Requires<[FeatureFPExtension]>;
  def LEXBRA : TernaryRRFe<"lexbra", 0xB346, FP128, FP128>,
               Requires<[FeatureFPExtension]>;
  def LDXBRA : TernaryRRFe<"ldxbra", 0xB345, FP128, FP128>,
               Requires<[FeatureFPExtension]>;
}

let Predicates = [FeatureNoVectorEnhancements1] in {
  def : Pat<(f32 (any_fpround FP128:$src)),
            (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_hh32)>;
  def : Pat<(f64 (any_fpround FP128:$src)),
            (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>;
}

// Extend register floating-point values to wider representations.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def LDEBR : UnaryRRE<"ldebr", 0xB304, any_fpextend, FP64, FP32>;
  def LXEBR : UnaryRRE<"lxebr", 0xB306, null_frag, FP128, FP32>;
  def LXDBR : UnaryRRE<"lxdbr", 0xB305, null_frag, FP128, FP64>;
}
let Predicates = [FeatureNoVectorEnhancements1] in {
  def : Pat<(f128 (any_fpextend (f32 FP32:$src))), (LXEBR FP32:$src)>;
  def : Pat<(f128 (any_fpextend (f64 FP64:$src))), (LXDBR FP64:$src)>;
}

// Extend memory floating-point values to wider representations.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def LDEB : UnaryRXE<"ldeb", 0xED04, any_extloadf32, FP64, 4>;
  def LXEB : UnaryRXE<"lxeb", 0xED06, null_frag, FP128, 4>;
  def LXDB : UnaryRXE<"lxdb", 0xED05, null_frag, FP128, 8>;
}
let Predicates = [FeatureNoVectorEnhancements1] in {
  def : Pat<(f128 (any_extloadf32 bdxaddr12only:$src)),
            (LXEB bdxaddr12only:$src)>;
  def : Pat<(f128 (any_extloadf64 bdxaddr12only:$src)),
            (LXDB bdxaddr12only:$src)>;
}

// Convert a signed integer register value to a floating-point one.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def CEFBR : UnaryRRE<"cefbr", 0xB394, sint_to_fp, FP32,  GR32>;
  def CDFBR : UnaryRRE<"cdfbr", 0xB395, sint_to_fp, FP64,  GR32>;
  def CXFBR : UnaryRRE<"cxfbr", 0xB396, sint_to_fp, FP128, GR32>;

  def CEGBR : UnaryRRE<"cegbr", 0xB3A4, sint_to_fp, FP32,  GR64>;
  def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, sint_to_fp, FP64,  GR64>;
  def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, sint_to_fp, FP128, GR64>;
}

// The FP extension feature provides versions of the above that allow
// specifying rounding mode and inexact-exception suppression flags.
let Uses = [FPC], mayRaiseFPException = 1, Predicates = [FeatureFPExtension] in {
  def CEFBRA : TernaryRRFe<"cefbra", 0xB394, FP32,  GR32>;
  def CDFBRA : TernaryRRFe<"cdfbra", 0xB395, FP64,  GR32>;
  def CXFBRA : TernaryRRFe<"cxfbra", 0xB396, FP128, GR32>;

  def CEGBRA : TernaryRRFe<"cegbra", 0xB3A4, FP32,  GR64>;
  def CDGBRA : TernaryRRFe<"cdgbra", 0xB3A5, FP64,  GR64>;
  def CXGBRA : TernaryRRFe<"cxgbra", 0xB3A6, FP128, GR64>;
}

// Convert am unsigned integer register value to a floating-point one.
let Predicates = [FeatureFPExtension] in {
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def CELFBR : TernaryRRFe<"celfbr", 0xB390, FP32,  GR32>;
    def CDLFBR : TernaryRRFe<"cdlfbr", 0xB391, FP64,  GR32>;
    def CXLFBR : TernaryRRFe<"cxlfbr", 0xB392, FP128, GR32>;

    def CELGBR : TernaryRRFe<"celgbr", 0xB3A0, FP32,  GR64>;
    def CDLGBR : TernaryRRFe<"cdlgbr", 0xB3A1, FP64,  GR64>;
    def CXLGBR : TernaryRRFe<"cxlgbr", 0xB3A2, FP128, GR64>;
  }

  def : Pat<(f32  (uint_to_fp GR32:$src)), (CELFBR 0, GR32:$src, 0)>;
  def : Pat<(f64  (uint_to_fp GR32:$src)), (CDLFBR 0, GR32:$src, 0)>;
  def : Pat<(f128 (uint_to_fp GR32:$src)), (CXLFBR 0, GR32:$src, 0)>;

  def : Pat<(f32  (uint_to_fp GR64:$src)), (CELGBR 0, GR64:$src, 0)>;
  def : Pat<(f64  (uint_to_fp GR64:$src)), (CDLGBR 0, GR64:$src, 0)>;
  def : Pat<(f128 (uint_to_fp GR64:$src)), (CXLGBR 0, GR64:$src, 0)>;
}

// Convert a floating-point register value to a signed integer value,
// with the second operand (modifier M3) specifying the rounding mode.
let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
  def CFEBR : BinaryRRFe<"cfebr", 0xB398, GR32, FP32>;
  def CFDBR : BinaryRRFe<"cfdbr", 0xB399, GR32, FP64>;
  def CFXBR : BinaryRRFe<"cfxbr", 0xB39A, GR32, FP128>;

  def CGEBR : BinaryRRFe<"cgebr", 0xB3A8, GR64, FP32>;
  def CGDBR : BinaryRRFe<"cgdbr", 0xB3A9, GR64, FP64>;
  def CGXBR : BinaryRRFe<"cgxbr", 0xB3AA, GR64, FP128>;
}

// fp_to_sint always rounds towards zero, which is modifier value 5.
def : Pat<(i32 (any_fp_to_sint FP32:$src)),  (CFEBR 5, FP32:$src)>;
def : Pat<(i32 (any_fp_to_sint FP64:$src)),  (CFDBR 5, FP64:$src)>;
def : Pat<(i32 (any_fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>;

def : Pat<(i64 (any_fp_to_sint FP32:$src)),  (CGEBR 5, FP32:$src)>;
def : Pat<(i64 (any_fp_to_sint FP64:$src)),  (CGDBR 5, FP64:$src)>;
def : Pat<(i64 (any_fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>;

// The FP extension feature provides versions of the above that allow
// also specifying the inexact-exception suppression flag.
let Uses = [FPC], mayRaiseFPException = 1,
    Predicates = [FeatureFPExtension], Defs = [CC] in {
  def CFEBRA : TernaryRRFe<"cfebra", 0xB398, GR32, FP32>;
  def CFDBRA : TernaryRRFe<"cfdbra", 0xB399, GR32, FP64>;
  def CFXBRA : TernaryRRFe<"cfxbra", 0xB39A, GR32, FP128>;

  def CGEBRA : TernaryRRFe<"cgebra", 0xB3A8, GR64, FP32>;
  def CGDBRA : TernaryRRFe<"cgdbra", 0xB3A9, GR64, FP64>;
  def CGXBRA : TernaryRRFe<"cgxbra", 0xB3AA, GR64, FP128>;
}

// Convert a floating-point register value to an unsigned integer value.
let Predicates = [FeatureFPExtension] in {
  let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
    def CLFEBR : TernaryRRFe<"clfebr", 0xB39C, GR32, FP32>;
    def CLFDBR : TernaryRRFe<"clfdbr", 0xB39D, GR32, FP64>;
    def CLFXBR : TernaryRRFe<"clfxbr", 0xB39E, GR32, FP128>;

    def CLGEBR : TernaryRRFe<"clgebr", 0xB3AC, GR64, FP32>;
    def CLGDBR : TernaryRRFe<"clgdbr", 0xB3AD, GR64, FP64>;
    def CLGXBR : TernaryRRFe<"clgxbr", 0xB3AE, GR64, FP128>;
  }

  def : Pat<(i32 (any_fp_to_uint FP32:$src)),  (CLFEBR 5, FP32:$src,  0)>;
  def : Pat<(i32 (any_fp_to_uint FP64:$src)),  (CLFDBR 5, FP64:$src,  0)>;
  def : Pat<(i32 (any_fp_to_uint FP128:$src)), (CLFXBR 5, FP128:$src, 0)>;

  def : Pat<(i64 (any_fp_to_uint FP32:$src)),  (CLGEBR 5, FP32:$src,  0)>;
  def : Pat<(i64 (any_fp_to_uint FP64:$src)),  (CLGDBR 5, FP64:$src,  0)>;
  def : Pat<(i64 (any_fp_to_uint FP128:$src)), (CLGXBR 5, FP128:$src, 0)>;
}


//===----------------------------------------------------------------------===//
// Unary arithmetic
//===----------------------------------------------------------------------===//

// We prefer generic instructions during isel, because they do not
// clobber CC and therefore give the scheduler more freedom. In cases
// the CC is actually useful, the SystemZElimCompare pass will try to
// convert generic instructions into opcodes that also set CC. Note
// that lcdf / lpdf / lndf only affect the sign bit, and can therefore
// be used with fp32 as well. This could be done for fp128, in which
// case the operands would have to be tied.

// Negation (Load Complement).
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
  def LCEBR : UnaryRRE<"lcebr", 0xB303, null_frag, FP32,  FP32>;
  def LCDBR : UnaryRRE<"lcdbr", 0xB313, null_frag, FP64,  FP64>;
  def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>;
}
// Generic form, which does not set CC.
def LCDFR : UnaryRRE<"lcdfr", 0xB373, fneg, FP64,  FP64>;
let isCodeGenOnly = 1 in
  def LCDFR_32 : UnaryRRE<"lcdfr", 0xB373, fneg, FP32,  FP32>;

// Absolute value (Load Positive).
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
  def LPEBR : UnaryRRE<"lpebr", 0xB300, null_frag, FP32,  FP32>;
  def LPDBR : UnaryRRE<"lpdbr", 0xB310, null_frag, FP64,  FP64>;
  def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>;
}
// Generic form, which does not set CC.
def LPDFR : UnaryRRE<"lpdfr", 0xB370, fabs, FP64,  FP64>;
let isCodeGenOnly = 1 in
  def LPDFR_32 : UnaryRRE<"lpdfr", 0xB370, fabs, FP32,  FP32>;

// Negative absolute value (Load Negative).
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
  def LNEBR : UnaryRRE<"lnebr", 0xB301, null_frag, FP32,  FP32>;
  def LNDBR : UnaryRRE<"lndbr", 0xB311, null_frag, FP64,  FP64>;
  def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>;
}
// Generic form, which does not set CC.
def LNDFR : UnaryRRE<"lndfr", 0xB371, fnabs, FP64,  FP64>;
let isCodeGenOnly = 1 in
  def LNDFR_32 : UnaryRRE<"lndfr", 0xB371, fnabs, FP32,  FP32>;

// Square root.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def SQEBR : UnaryRRE<"sqebr", 0xB314, any_fsqrt, FP32,  FP32>;
  def SQDBR : UnaryRRE<"sqdbr", 0xB315, any_fsqrt, FP64,  FP64>;
  def SQXBR : UnaryRRE<"sqxbr", 0xB316, any_fsqrt, FP128, FP128>;

  def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<any_fsqrt>, FP32, 4>;
  def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<any_fsqrt>, FP64, 8>;
}

// Round to an integer, with the second operand (modifier M3) specifying
// the rounding mode.  These forms always check for inexact conditions.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def FIEBR : BinaryRRFe<"fiebr", 0xB357, FP32,  FP32>;
  def FIDBR : BinaryRRFe<"fidbr", 0xB35F, FP64,  FP64>;
  def FIXBR : BinaryRRFe<"fixbr", 0xB347, FP128, FP128>;
}

// frint rounds according to the current mode (modifier 0) and detects
// inexact conditions.
def : Pat<(any_frint FP32:$src),  (FIEBR 0, FP32:$src)>;
def : Pat<(any_frint FP64:$src),  (FIDBR 0, FP64:$src)>;
def : Pat<(any_frint FP128:$src), (FIXBR 0, FP128:$src)>;

let Predicates = [FeatureFPExtension] in {
  // Extended forms of the FIxBR instructions.  M4 can be set to 4
  // to suppress detection of inexact conditions.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def FIEBRA : TernaryRRFe<"fiebra", 0xB357, FP32,  FP32>;
    def FIDBRA : TernaryRRFe<"fidbra", 0xB35F, FP64,  FP64>;
    def FIXBRA : TernaryRRFe<"fixbra", 0xB347, FP128, FP128>;
  }

  // fnearbyint is like frint but does not detect inexact conditions.
  def : Pat<(any_fnearbyint FP32:$src),  (FIEBRA 0, FP32:$src,  4)>;
  def : Pat<(any_fnearbyint FP64:$src),  (FIDBRA 0, FP64:$src,  4)>;
  def : Pat<(any_fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>;

  // floor is no longer allowed to raise an inexact condition,
  // so restrict it to the cases where the condition can be suppressed.
  // Mode 7 is round towards -inf.
  def : Pat<(any_ffloor FP32:$src),  (FIEBRA 7, FP32:$src,  4)>;
  def : Pat<(any_ffloor FP64:$src),  (FIDBRA 7, FP64:$src,  4)>;
  def : Pat<(any_ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>;

  // Same idea for ceil, where mode 6 is round towards +inf.
  def : Pat<(any_fceil FP32:$src),  (FIEBRA 6, FP32:$src,  4)>;
  def : Pat<(any_fceil FP64:$src),  (FIDBRA 6, FP64:$src,  4)>;
  def : Pat<(any_fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>;

  // Same idea for trunc, where mode 5 is round towards zero.
  def : Pat<(any_ftrunc FP32:$src),  (FIEBRA 5, FP32:$src,  4)>;
  def : Pat<(any_ftrunc FP64:$src),  (FIDBRA 5, FP64:$src,  4)>;
  def : Pat<(any_ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>;

  // Same idea for round, where mode 1 is round towards nearest with
  // ties away from zero.
  def : Pat<(any_fround FP32:$src),  (FIEBRA 1, FP32:$src,  4)>;
  def : Pat<(any_fround FP64:$src),  (FIDBRA 1, FP64:$src,  4)>;
  def : Pat<(any_fround FP128:$src), (FIXBRA 1, FP128:$src, 4)>;
}

//===----------------------------------------------------------------------===//
// Binary arithmetic
//===----------------------------------------------------------------------===//

// Addition.
let Uses = [FPC], mayRaiseFPException = 1,
    Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
  let isCommutable = 1 in {
    def AEBR : BinaryRRE<"aebr", 0xB30A, any_fadd, FP32,  FP32>;
    def ADBR : BinaryRRE<"adbr", 0xB31A, any_fadd, FP64,  FP64>;
    def AXBR : BinaryRRE<"axbr", 0xB34A, any_fadd, FP128, FP128>;
  }
  def AEB : BinaryRXE<"aeb", 0xED0A, any_fadd, FP32, load, 4>;
  def ADB : BinaryRXE<"adb", 0xED1A, any_fadd, FP64, load, 8>;
}

// Subtraction.
let Uses = [FPC], mayRaiseFPException = 1,
    Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
  def SEBR : BinaryRRE<"sebr", 0xB30B, any_fsub, FP32,  FP32>;
  def SDBR : BinaryRRE<"sdbr", 0xB31B, any_fsub, FP64,  FP64>;
  def SXBR : BinaryRRE<"sxbr", 0xB34B, any_fsub, FP128, FP128>;

  def SEB : BinaryRXE<"seb",  0xED0B, any_fsub, FP32, load, 4>;
  def SDB : BinaryRXE<"sdb",  0xED1B, any_fsub, FP64, load, 8>;
}

// Multiplication.
let Uses = [FPC], mayRaiseFPException = 1 in {
  let isCommutable = 1 in {
    def MEEBR : BinaryRRE<"meebr", 0xB317, any_fmul, FP32,  FP32>;
    def MDBR  : BinaryRRE<"mdbr",  0xB31C, any_fmul, FP64,  FP64>;
    def MXBR  : BinaryRRE<"mxbr",  0xB34C, any_fmul, FP128, FP128>;
  }
  def MEEB : BinaryRXE<"meeb", 0xED17, any_fmul, FP32, load, 4>;
  def MDB  : BinaryRXE<"mdb",  0xED1C, any_fmul, FP64, load, 8>;
}

// f64 multiplication of two FP32 registers.
let Uses = [FPC], mayRaiseFPException = 1 in
  def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>;
def : Pat<(any_fmul (f64 (fpextend FP32:$src1)),
                    (f64 (fpextend FP32:$src2))),
          (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
                                FP32:$src1, subreg_h32), FP32:$src2)>;

// f64 multiplication of an FP32 register and an f32 memory.
let Uses = [FPC], mayRaiseFPException = 1 in
  def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>;
def : Pat<(any_fmul (f64 (fpextend FP32:$src1)),
                    (f64 (extloadf32 bdxaddr12only:$addr))),
          (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_h32),
                bdxaddr12only:$addr)>;

// f128 multiplication of two FP64 registers.
let Uses = [FPC], mayRaiseFPException = 1 in
  def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>;
let Predicates = [FeatureNoVectorEnhancements1] in
  def : Pat<(any_fmul (f128 (fpextend FP64:$src1)),
                      (f128 (fpextend FP64:$src2))),
            (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
                                  FP64:$src1, subreg_h64), FP64:$src2)>;

// f128 multiplication of an FP64 register and an f64 memory.
let Uses = [FPC], mayRaiseFPException = 1 in
  def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>;
let Predicates = [FeatureNoVectorEnhancements1] in
  def : Pat<(any_fmul (f128 (fpextend FP64:$src1)),
                      (f128 (extloadf64 bdxaddr12only:$addr))),
            (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64),
                  bdxaddr12only:$addr)>;

// Fused multiply-add.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def MAEBR : TernaryRRD<"maebr", 0xB30E, z_any_fma, FP32, FP32>;
  def MADBR : TernaryRRD<"madbr", 0xB31E, z_any_fma, FP64, FP64>;

  def MAEB : TernaryRXF<"maeb", 0xED0E, z_any_fma, FP32, FP32, load, 4>;
  def MADB : TernaryRXF<"madb", 0xED1E, z_any_fma, FP64, FP64, load, 8>;
}

// Fused multiply-subtract.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def MSEBR : TernaryRRD<"msebr", 0xB30F, z_any_fms, FP32, FP32>;
  def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_any_fms, FP64, FP64>;

  def MSEB : TernaryRXF<"mseb", 0xED0F, z_any_fms, FP32, FP32, load, 4>;
  def MSDB : TernaryRXF<"msdb", 0xED1F, z_any_fms, FP64, FP64, load, 8>;
}

// Division.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def DEBR : BinaryRRE<"debr", 0xB30D, any_fdiv, FP32,  FP32>;
  def DDBR : BinaryRRE<"ddbr", 0xB31D, any_fdiv, FP64,  FP64>;
  def DXBR : BinaryRRE<"dxbr", 0xB34D, any_fdiv, FP128, FP128>;

  def DEB : BinaryRXE<"deb", 0xED0D, any_fdiv, FP32, load, 4>;
  def DDB : BinaryRXE<"ddb", 0xED1D, any_fdiv, FP64, load, 8>;
}

// Divide to integer.
let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
  def DIEBR : TernaryRRFb<"diebr", 0xB353, FP32, FP32, FP32>;
  def DIDBR : TernaryRRFb<"didbr", 0xB35B, FP64, FP64, FP64>;
}

//===----------------------------------------------------------------------===//
// Comparisons
//===----------------------------------------------------------------------===//

let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC], CCValues = 0xF in {
  def CEBR : CompareRRE<"cebr", 0xB309, z_fcmp, FP32,  FP32>;
  def CDBR : CompareRRE<"cdbr", 0xB319, z_fcmp, FP64,  FP64>;
  def CXBR : CompareRRE<"cxbr", 0xB349, z_fcmp, FP128, FP128>;

  def CEB : CompareRXE<"ceb", 0xED09, z_fcmp, FP32, load, 4>;
  def CDB : CompareRXE<"cdb", 0xED19, z_fcmp, FP64, load, 8>;

  def KEBR : CompareRRE<"kebr", 0xB308, null_frag, FP32,  FP32>;
  def KDBR : CompareRRE<"kdbr", 0xB318, null_frag, FP64,  FP64>;
  def KXBR : CompareRRE<"kxbr", 0xB348, null_frag, FP128, FP128>;

  def KEB : CompareRXE<"keb", 0xED08, null_frag, FP32, load, 4>;
  def KDB : CompareRXE<"kdb", 0xED18, null_frag, FP64, load, 8>;
}

// Test Data Class.
let Defs = [CC], CCValues = 0xC in {
  def TCEB : TestRXE<"tceb", 0xED10, z_tdc, FP32>;
  def TCDB : TestRXE<"tcdb", 0xED11, z_tdc, FP64>;
  def TCXB : TestRXE<"tcxb", 0xED12, z_tdc, FP128>;
}

//===----------------------------------------------------------------------===//
// Floating-point control register instructions
//===----------------------------------------------------------------------===//

let hasSideEffects = 1 in {
  let mayLoad = 1, mayStore = 1 in {
    // TODO: EFPC and SFPC do not touch memory at all
    let Uses = [FPC] in {
      def EFPC  : InherentRRE<"efpc", 0xB38C, GR32, int_s390_efpc>;
      def STFPC : StoreInherentS<"stfpc", 0xB29C, storei<int_s390_efpc>, 4>;
    }

    let Defs = [FPC] in {
      def SFPC : SideEffectUnaryRRE<"sfpc", 0xB384, GR32, int_s390_sfpc>;
      def LFPC : SideEffectUnaryS<"lfpc", 0xB29D, loadu<int_s390_sfpc>, 4>;
    }
  }

  let Defs = [FPC], mayRaiseFPException = 1 in {
    def SFASR : SideEffectUnaryRRE<"sfasr", 0xB385, GR32, null_frag>;
    def LFAS  : SideEffectUnaryS<"lfas", 0xB2BD, null_frag, 4>;
  }

  let Uses = [FPC], Defs = [FPC] in {
    def SRNMB : SideEffectAddressS<"srnmb", 0xB2B8, null_frag, shift12only>,
                Requires<[FeatureFPExtension]>;
    def SRNM  : SideEffectAddressS<"srnm", 0xB299, null_frag, shift12only>;
    def SRNMT : SideEffectAddressS<"srnmt", 0xB2B9, null_frag, shift12only>;
  }
}

//===----------------------------------------------------------------------===//
// Peepholes
//===----------------------------------------------------------------------===//

def : Pat<(f32  fpimmneg0), (LCDFR_32 (LZER))>;
def : Pat<(f64  fpimmneg0), (LCDFR (LZDR))>;
def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;