reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
//==- SystemZInstrDFP.td - Floating-point SystemZ instructions -*- tblgen-*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The instructions in this file implement SystemZ decimal floating-point
// arithmetic.  These instructions are inot currently used for code generation,
// are provided for use with the assembler and disassembler only.  If LLVM
// ever supports decimal floating-point types (_Decimal64 etc.), they can
// also be used for code generation for those types.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//

// Load and test.
let Uses = [FPC], Defs = [CC] in {
  def LTDTR : UnaryRRE<"ltdtr", 0xB3D6, null_frag, FP64,  FP64>;
  def LTXTR : UnaryRRE<"ltxtr", 0xB3DE, null_frag, FP128, FP128>;
}


//===----------------------------------------------------------------------===//
// Conversion instructions
//===----------------------------------------------------------------------===//

// Convert floating-point values to narrower representations.  The destination
// of LDXTR is a 128-bit value, but only the first register of the pair is used.
let Uses = [FPC] in {
  def LEDTR : TernaryRRFe<"ledtr", 0xB3D5, FP32,  FP64>;
  def LDXTR : TernaryRRFe<"ldxtr", 0xB3DD, FP128, FP128>;
}

// Extend floating-point values to wider representations.
let Uses = [FPC] in {
  def LDETR : BinaryRRFd<"ldetr", 0xB3D4, FP64,  FP32>;
  def LXDTR : BinaryRRFd<"lxdtr", 0xB3DC, FP128, FP64>;
}

// Convert a signed integer value to a floating-point one.
let Uses = [FPC] in {
  def CDGTR : UnaryRRE<"cdgtr", 0xB3F1, null_frag, FP64,  GR64>;
  def CXGTR : UnaryRRE<"cxgtr", 0xB3F9, null_frag, FP128, GR64>;
  let Predicates = [FeatureFPExtension] in {
    def CDGTRA : TernaryRRFe<"cdgtra", 0xB3F1, FP64,  GR64>;
    def CXGTRA : TernaryRRFe<"cxgtra", 0xB3F9, FP128, GR64>;
    def CDFTR : TernaryRRFe<"cdftr", 0xB951, FP64,  GR32>;
    def CXFTR : TernaryRRFe<"cxftr", 0xB959, FP128, GR32>;
  }
}

// Convert an unsigned integer value to a floating-point one.
let Uses = [FPC], Predicates = [FeatureFPExtension] in {
  def CDLGTR : TernaryRRFe<"cdlgtr", 0xB952, FP64,  GR64>;
  def CXLGTR : TernaryRRFe<"cxlgtr", 0xB95A, FP128, GR64>;
  def CDLFTR : TernaryRRFe<"cdlftr", 0xB953, FP64,  GR32>;
  def CXLFTR : TernaryRRFe<"cxlftr", 0xB95B, FP128, GR32>;
}

// Convert a floating-point value to a signed integer value.
let Uses = [FPC], Defs = [CC] in {
  def CGDTR : BinaryRRFe<"cgdtr", 0xB3E1, GR64, FP64>;
  def CGXTR : BinaryRRFe<"cgxtr", 0xB3E9, GR64, FP128>;
  let Predicates = [FeatureFPExtension] in {
    def CGDTRA : TernaryRRFe<"cgdtra", 0xB3E1, GR64, FP64>;
    def CGXTRA : TernaryRRFe<"cgxtra", 0xB3E9, GR64, FP128>;
    def CFDTR : TernaryRRFe<"cfdtr", 0xB941, GR32, FP64>;
    def CFXTR : TernaryRRFe<"cfxtr", 0xB949, GR32, FP128>;
  }
}

// Convert a floating-point value to an unsigned integer value.
let Uses = [FPC], Defs = [CC] in {
  let Predicates = [FeatureFPExtension] in {
    def CLGDTR : TernaryRRFe<"clgdtr", 0xB942, GR64, FP64>;
    def CLGXTR : TernaryRRFe<"clgxtr", 0xB94A, GR64, FP128>;
    def CLFDTR : TernaryRRFe<"clfdtr", 0xB943, GR32, FP64>;
    def CLFXTR : TernaryRRFe<"clfxtr", 0xB94B, GR32, FP128>;
  }
}

// Convert a packed value to a floating-point one.
def CDSTR : UnaryRRE<"cdstr", 0xB3F3, null_frag, FP64,  GR64>;
def CXSTR : UnaryRRE<"cxstr", 0xB3FB, null_frag, FP128, GR128>;
def CDUTR : UnaryRRE<"cdutr", 0xB3F2, null_frag, FP64,  GR64>;
def CXUTR : UnaryRRE<"cxutr", 0xB3FA, null_frag, FP128, GR128>;

// Convert a floating-point value to a packed value.
def CSDTR : BinaryRRFd<"csdtr", 0xB3E3, GR64,  FP64>;
def CSXTR : BinaryRRFd<"csxtr", 0xB3EB, GR128, FP128>;
def CUDTR : UnaryRRE<"cudtr", 0xB3E2, null_frag, GR64,  FP64>;
def CUXTR : UnaryRRE<"cuxtr", 0xB3EA, null_frag, GR128, FP128>;

// Convert from/to memory values in the zoned format.
let Predicates = [FeatureDFPZonedConversion] in {
  def CDZT : BinaryRSL<"cdzt", 0xEDAA, FP64>;
  def CXZT : BinaryRSL<"cxzt", 0xEDAB, FP128>;
  def CZDT : StoreBinaryRSL<"czdt", 0xEDA8, FP64>;
  def CZXT : StoreBinaryRSL<"czxt", 0xEDA9, FP128>;
}

// Convert from/to memory values in the packed format.
let Predicates = [FeatureDFPPackedConversion] in {
  def CDPT : BinaryRSL<"cdpt", 0xEDAE, FP64>;
  def CXPT : BinaryRSL<"cxpt", 0xEDAF, FP128>;
  def CPDT : StoreBinaryRSL<"cpdt", 0xEDAC, FP64>;
  def CPXT : StoreBinaryRSL<"cpxt", 0xEDAD, FP128>;
}

// Perform floating-point operation.
let Defs = [CC, R1L, F0Q], Uses = [FPC, R0L, F4Q] in
  def PFPO : SideEffectInherentE<"pfpo", 0x010A>;


//===----------------------------------------------------------------------===//
// Unary arithmetic
//===----------------------------------------------------------------------===//

// Round to an integer, with the second operand (M3) specifying the rounding
// mode.  M4 can be set to 4 to suppress detection of inexact conditions.
let Uses = [FPC] in {
  def FIDTR : TernaryRRFe<"fidtr", 0xB3D7, FP64,  FP64>;
  def FIXTR : TernaryRRFe<"fixtr", 0xB3DF, FP128, FP128>;
}

// Extract biased exponent.
def EEDTR : UnaryRRE<"eedtr", 0xB3E5, null_frag, FP64,  FP64>;
def EEXTR : UnaryRRE<"eextr", 0xB3ED, null_frag, FP128, FP128>;

// Extract significance.
def ESDTR : UnaryRRE<"esdtr", 0xB3E7, null_frag, FP64,  FP64>;
def ESXTR : UnaryRRE<"esxtr", 0xB3EF, null_frag, FP128, FP128>;


//===----------------------------------------------------------------------===//
// Binary arithmetic
//===----------------------------------------------------------------------===//

// Addition.
let Uses = [FPC], Defs = [CC] in {
  let isCommutable = 1 in {
    def ADTR : BinaryRRFa<"adtr", 0xB3D2, null_frag, FP64,  FP64,  FP64>;
    def AXTR : BinaryRRFa<"axtr", 0xB3DA, null_frag, FP128, FP128, FP128>;
  }
  let Predicates = [FeatureFPExtension] in {
    def ADTRA : TernaryRRFa<"adtra", 0xB3D2, FP64,  FP64,  FP64>;
    def AXTRA : TernaryRRFa<"axtra", 0xB3DA, FP128, FP128, FP128>;
  }
}

// Subtraction.
let Uses = [FPC], Defs = [CC] in {
  def SDTR : BinaryRRFa<"sdtr", 0xB3D3, null_frag, FP64,  FP64,  FP64>;
  def SXTR : BinaryRRFa<"sxtr", 0xB3DB, null_frag, FP128, FP128, FP128>;
  let Predicates = [FeatureFPExtension] in {
    def SDTRA : TernaryRRFa<"sdtra", 0xB3D3, FP64,  FP64,  FP64>;
    def SXTRA : TernaryRRFa<"sxtra", 0xB3DB, FP128, FP128, FP128>;
  }
}

// Multiplication.
let Uses = [FPC] in {
  let isCommutable = 1 in {
    def MDTR : BinaryRRFa<"mdtr", 0xB3D0, null_frag, FP64,  FP64,  FP64>;
    def MXTR : BinaryRRFa<"mxtr", 0xB3D8, null_frag, FP128, FP128, FP128>;
  }
  let Predicates = [FeatureFPExtension] in {
    def MDTRA : TernaryRRFa<"mdtra", 0xB3D0, FP64,  FP64,  FP64>;
    def MXTRA : TernaryRRFa<"mxtra", 0xB3D8, FP128, FP128, FP128>;
  }
}

// Division.
let Uses = [FPC] in {
  def DDTR : BinaryRRFa<"ddtr", 0xB3D1, null_frag, FP64,  FP64,  FP64>;
  def DXTR : BinaryRRFa<"dxtr", 0xB3D9, null_frag, FP128, FP128, FP128>;
  let Predicates = [FeatureFPExtension] in {
    def DDTRA : TernaryRRFa<"ddtra", 0xB3D1, FP64,  FP64,  FP64>;
    def DXTRA : TernaryRRFa<"dxtra", 0xB3D9, FP128, FP128, FP128>;
  }
}

// Quantize.
let Uses = [FPC] in {
  def QADTR : TernaryRRFb<"qadtr", 0xB3F5, FP64,  FP64,  FP64>;
  def QAXTR : TernaryRRFb<"qaxtr", 0xB3FD, FP128, FP128, FP128>;
}

// Reround.
let Uses = [FPC] in {
  def RRDTR : TernaryRRFb<"rrdtr", 0xB3F7, FP64,  FP64,  FP64>;
  def RRXTR : TernaryRRFb<"rrxtr", 0xB3FF, FP128, FP128, FP128>;
}

// Shift significand left/right.
def SLDT : BinaryRXF<"sldt", 0xED40, null_frag, FP64,  FP64,  null_frag, 0>;
def SLXT : BinaryRXF<"slxt", 0xED48, null_frag, FP128, FP128, null_frag, 0>;
def SRDT : BinaryRXF<"srdt", 0xED41, null_frag, FP64,  FP64,  null_frag, 0>;
def SRXT : BinaryRXF<"srxt", 0xED49, null_frag, FP128, FP128, null_frag, 0>;

// Insert biased exponent.
def IEDTR : BinaryRRFb<"iedtr", 0xB3F6, null_frag, FP64,  FP64,   FP64>;
def IEXTR : BinaryRRFb<"iextr", 0xB3FE, null_frag, FP128, FP128, FP128>;


//===----------------------------------------------------------------------===//
// Comparisons
//===----------------------------------------------------------------------===//

// Compare.
let Uses = [FPC], Defs = [CC] in {
  def CDTR : CompareRRE<"cdtr", 0xB3E4, null_frag, FP64,  FP64>;
  def CXTR : CompareRRE<"cxtr", 0xB3EC, null_frag, FP128, FP128>;
}

// Compare and signal.
let Uses = [FPC], Defs = [CC] in {
  def KDTR : CompareRRE<"kdtr", 0xB3E0, null_frag, FP64,  FP64>;
  def KXTR : CompareRRE<"kxtr", 0xB3E8, null_frag, FP128, FP128>;
}

// Compare biased exponent.
let Defs = [CC] in {
  def CEDTR : CompareRRE<"cedtr", 0xB3F4, null_frag, FP64,  FP64>;
  def CEXTR : CompareRRE<"cextr", 0xB3FC, null_frag, FP128, FP128>;
}

// Test Data Class.
let Defs = [CC] in {
  def TDCET : TestRXE<"tdcet", 0xED50, null_frag, FP32>;
  def TDCDT : TestRXE<"tdcdt", 0xED54, null_frag, FP64>;
  def TDCXT : TestRXE<"tdcxt", 0xED58, null_frag, FP128>;
}

// Test Data Group.
let Defs = [CC] in {
  def TDGET : TestRXE<"tdget", 0xED51, null_frag, FP32>;
  def TDGDT : TestRXE<"tdgdt", 0xED55, null_frag, FP64>;
  def TDGXT : TestRXE<"tdgxt", 0xED59, null_frag, FP128>;
}