reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
//===- HexagonGenMux.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// During instruction selection, MUX instructions are generated for
// conditional assignments. Since such assignments often present an
// opportunity to predicate instructions, HexagonExpandCondsets
// expands MUXes into pairs of conditional transfers, and then proceeds
// with predication of the producers/consumers of the registers involved.
// This happens after exiting from the SSA form, but before the machine
// instruction scheduler. After the scheduler and after the register
// allocation there can be cases of pairs of conditional transfers
// resulting from a MUX where neither of them was further predicated. If
// these transfers are now placed far enough from the instruction defining
// the predicate register, they cannot use the .new form. In such cases it
// is better to collapse them back to a single MUX instruction.

#define DEBUG_TYPE "hexmux"

#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <limits>
#include <utility>

using namespace llvm;

namespace llvm {

  FunctionPass *createHexagonGenMux();
  void initializeHexagonGenMuxPass(PassRegistry& Registry);

} // end namespace llvm

// Initialize this to 0 to always prefer generating mux by default.
static cl::opt<unsigned> MinPredDist("hexagon-gen-mux-threshold", cl::Hidden,
  cl::init(0), cl::desc("Minimum distance between predicate definition and "
  "farther of the two predicated uses"));

namespace {

  class HexagonGenMux : public MachineFunctionPass {
  public:
    static char ID;

    HexagonGenMux() : MachineFunctionPass(ID) {}

    StringRef getPassName() const override {
      return "Hexagon generate mux instructions";
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

  private:
    const HexagonInstrInfo *HII = nullptr;
    const HexagonRegisterInfo *HRI = nullptr;

    struct CondsetInfo {
      unsigned PredR = 0;
      unsigned TrueX = std::numeric_limits<unsigned>::max();
      unsigned FalseX = std::numeric_limits<unsigned>::max();

      CondsetInfo() = default;
    };

    struct DefUseInfo {
      BitVector Defs, Uses;

      DefUseInfo() = default;
      DefUseInfo(const BitVector &D, const BitVector &U) : Defs(D), Uses(U) {}
    };

    struct MuxInfo {
      MachineBasicBlock::iterator At;
      unsigned DefR, PredR;
      MachineOperand *SrcT, *SrcF;
      MachineInstr *Def1, *Def2;

      MuxInfo(MachineBasicBlock::iterator It, unsigned DR, unsigned PR,
              MachineOperand *TOp, MachineOperand *FOp, MachineInstr &D1,
              MachineInstr &D2)
          : At(It), DefR(DR), PredR(PR), SrcT(TOp), SrcF(FOp), Def1(&D1),
            Def2(&D2) {}
    };

    using InstrIndexMap = DenseMap<MachineInstr *, unsigned>;
    using DefUseInfoMap = DenseMap<unsigned, DefUseInfo>;
    using MuxInfoList = SmallVector<MuxInfo, 4>;

    bool isRegPair(unsigned Reg) const {
      return Hexagon::DoubleRegsRegClass.contains(Reg);
    }

    void getSubRegs(unsigned Reg, BitVector &SRs) const;
    void expandReg(unsigned Reg, BitVector &Set) const;
    void getDefsUses(const MachineInstr *MI, BitVector &Defs,
          BitVector &Uses) const;
    void buildMaps(MachineBasicBlock &B, InstrIndexMap &I2X,
          DefUseInfoMap &DUM);
    bool isCondTransfer(unsigned Opc) const;
    unsigned getMuxOpcode(const MachineOperand &Src1,
          const MachineOperand &Src2) const;
    bool genMuxInBlock(MachineBasicBlock &B);
  };

} // end anonymous namespace

char HexagonGenMux::ID = 0;

INITIALIZE_PASS(HexagonGenMux, "hexagon-gen-mux",
  "Hexagon generate mux instructions", false, false)

void HexagonGenMux::getSubRegs(unsigned Reg, BitVector &SRs) const {
  for (MCSubRegIterator I(Reg, HRI); I.isValid(); ++I)
    SRs[*I] = true;
}

void HexagonGenMux::expandReg(unsigned Reg, BitVector &Set) const {
  if (isRegPair(Reg))
    getSubRegs(Reg, Set);
  else
    Set[Reg] = true;
}

void HexagonGenMux::getDefsUses(const MachineInstr *MI, BitVector &Defs,
      BitVector &Uses) const {
  // First, get the implicit defs and uses for this instruction.
  unsigned Opc = MI->getOpcode();
  const MCInstrDesc &D = HII->get(Opc);
  if (const MCPhysReg *R = D.ImplicitDefs)
    while (*R)
      expandReg(*R++, Defs);
  if (const MCPhysReg *R = D.ImplicitUses)
    while (*R)
      expandReg(*R++, Uses);

  // Look over all operands, and collect explicit defs and uses.
  for (const MachineOperand &MO : MI->operands()) {
    if (!MO.isReg() || MO.isImplicit())
      continue;
    Register R = MO.getReg();
    BitVector &Set = MO.isDef() ? Defs : Uses;
    expandReg(R, Set);
  }
}

void HexagonGenMux::buildMaps(MachineBasicBlock &B, InstrIndexMap &I2X,
      DefUseInfoMap &DUM) {
  unsigned Index = 0;
  unsigned NR = HRI->getNumRegs();
  BitVector Defs(NR), Uses(NR);

  for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
    MachineInstr *MI = &*I;
    I2X.insert(std::make_pair(MI, Index));
    Defs.reset();
    Uses.reset();
    getDefsUses(MI, Defs, Uses);
    DUM.insert(std::make_pair(Index, DefUseInfo(Defs, Uses)));
    Index++;
  }
}

bool HexagonGenMux::isCondTransfer(unsigned Opc) const {
  switch (Opc) {
    case Hexagon::A2_tfrt:
    case Hexagon::A2_tfrf:
    case Hexagon::C2_cmoveit:
    case Hexagon::C2_cmoveif:
      return true;
  }
  return false;
}

unsigned HexagonGenMux::getMuxOpcode(const MachineOperand &Src1,
      const MachineOperand &Src2) const {
  bool IsReg1 = Src1.isReg(), IsReg2 = Src2.isReg();
  if (IsReg1)
    return IsReg2 ? Hexagon::C2_mux : Hexagon::C2_muxir;
  if (IsReg2)
    return Hexagon::C2_muxri;

  // Neither is a register. The first source is extendable, but the second
  // is not (s8).
  if (Src2.isImm() && isInt<8>(Src2.getImm()))
    return Hexagon::C2_muxii;

  return 0;
}

bool HexagonGenMux::genMuxInBlock(MachineBasicBlock &B) {
  bool Changed = false;
  InstrIndexMap I2X;
  DefUseInfoMap DUM;
  buildMaps(B, I2X, DUM);

  using CondsetMap = DenseMap<unsigned, CondsetInfo>;

  CondsetMap CM;
  MuxInfoList ML;

  MachineBasicBlock::iterator NextI, End = B.end();
  for (MachineBasicBlock::iterator I = B.begin(); I != End; I = NextI) {
    MachineInstr *MI = &*I;
    NextI = std::next(I);
    unsigned Opc = MI->getOpcode();
    if (!isCondTransfer(Opc))
      continue;
    Register DR = MI->getOperand(0).getReg();
    if (isRegPair(DR))
      continue;
    MachineOperand &PredOp = MI->getOperand(1);
    if (PredOp.isUndef())
      continue;

    Register PR = PredOp.getReg();
    unsigned Idx = I2X.lookup(MI);
    CondsetMap::iterator F = CM.find(DR);
    bool IfTrue = HII->isPredicatedTrue(Opc);

    // If there is no record of a conditional transfer for this register,
    // or the predicate register differs, create a new record for it.
    if (F != CM.end() && F->second.PredR != PR) {
      CM.erase(F);
      F = CM.end();
    }
    if (F == CM.end()) {
      auto It = CM.insert(std::make_pair(DR, CondsetInfo()));
      F = It.first;
      F->second.PredR = PR;
    }
    CondsetInfo &CI = F->second;
    if (IfTrue)
      CI.TrueX = Idx;
    else
      CI.FalseX = Idx;
    if (CI.TrueX == std::numeric_limits<unsigned>::max() ||
        CI.FalseX == std::numeric_limits<unsigned>::max())
      continue;

    // There is now a complete definition of DR, i.e. we have the predicate
    // register, the definition if-true, and definition if-false.

    // First, check if the definitions are far enough from the definition
    // of the predicate register.
    unsigned MinX = std::min(CI.TrueX, CI.FalseX);
    unsigned MaxX = std::max(CI.TrueX, CI.FalseX);
    // Specifically, check if the predicate definition is within a prescribed
    // distance from the farther of the two predicated instructions.
    unsigned SearchX = (MaxX >= MinPredDist) ? MaxX-MinPredDist : 0;
    bool NearDef = false;
    for (unsigned X = SearchX; X < MaxX; ++X) {
      const DefUseInfo &DU = DUM.lookup(X);
      if (!DU.Defs[PR])
        continue;
      NearDef = true;
      break;
    }
    if (NearDef)
      continue;

    // The predicate register is not defined in the last few instructions.
    // Check if the conversion to MUX is possible (either "up", i.e. at the
    // place of the earlier partial definition, or "down", where the later
    // definition is located). Examine all defs and uses between these two
    // definitions.
    // SR1, SR2 - source registers from the first and the second definition.
    MachineBasicBlock::iterator It1 = B.begin(), It2 = B.begin();
    std::advance(It1, MinX);
    std::advance(It2, MaxX);
    MachineInstr &Def1 = *It1, &Def2 = *It2;
    MachineOperand *Src1 = &Def1.getOperand(2), *Src2 = &Def2.getOperand(2);
    Register SR1 = Src1->isReg() ? Src1->getReg() : Register();
    Register SR2 = Src2->isReg() ? Src2->getReg() : Register();
    bool Failure = false, CanUp = true, CanDown = true;
    for (unsigned X = MinX+1; X < MaxX; X++) {
      const DefUseInfo &DU = DUM.lookup(X);
      if (DU.Defs[PR] || DU.Defs[DR] || DU.Uses[DR]) {
        Failure = true;
        break;
      }
      if (CanDown && DU.Defs[SR1])
        CanDown = false;
      if (CanUp && DU.Defs[SR2])
        CanUp = false;
    }
    if (Failure || (!CanUp && !CanDown))
      continue;

    MachineOperand *SrcT = (MinX == CI.TrueX) ? Src1 : Src2;
    MachineOperand *SrcF = (MinX == CI.FalseX) ? Src1 : Src2;
    // Prefer "down", since this will move the MUX farther away from the
    // predicate definition.
    MachineBasicBlock::iterator At = CanDown ? Def2 : Def1;
    ML.push_back(MuxInfo(At, DR, PR, SrcT, SrcF, Def1, Def2));
  }

  for (MuxInfo &MX : ML) {
    unsigned MxOpc = getMuxOpcode(*MX.SrcT, *MX.SrcF);
    if (!MxOpc)
      continue;
    MachineBasicBlock &B = *MX.At->getParent();
    const DebugLoc &DL = B.findDebugLoc(MX.At);
    auto NewMux = BuildMI(B, MX.At, DL, HII->get(MxOpc), MX.DefR)
                      .addReg(MX.PredR)
                      .add(*MX.SrcT)
                      .add(*MX.SrcF);
    NewMux->clearKillInfo();
    B.erase(MX.Def1);
    B.erase(MX.Def2);
    Changed = true;
  }

  // Fix up kill flags.

  LivePhysRegs LPR(*HRI);
  LPR.addLiveOuts(B);
  auto IsLive = [&LPR,this] (unsigned Reg) -> bool {
    for (MCSubRegIterator S(Reg, HRI, true); S.isValid(); ++S)
      if (LPR.contains(*S))
        return true;
    return false;
  };
  for (auto I = B.rbegin(), E = B.rend(); I != E; ++I) {
    if (I->isDebugInstr())
      continue;
    // This isn't 100% accurate, but it's safe.
    // It won't detect (as a kill) a case like this
    //   r0 = add r0, 1    <-- r0 should be "killed"
    //   ... = r0
    for (MachineOperand &Op : I->operands()) {
      if (!Op.isReg() || !Op.isUse())
        continue;
      assert(Op.getSubReg() == 0 && "Should have physical registers only");
      bool Live = IsLive(Op.getReg());
      Op.setIsKill(!Live);
    }
    LPR.stepBackward(*I);
  }

  return Changed;
}

bool HexagonGenMux::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;
  HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
  HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
  bool Changed = false;
  for (auto &I : MF)
    Changed |= genMuxInBlock(I);
  return Changed;
}

FunctionPass *llvm::createHexagonGenMux() {
  return new HexagonGenMux();
}