reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
//===- HexagonCFGOptimizer.cpp - CFG optimizations ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Hexagon.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "hexagon_cfg"

namespace llvm {

FunctionPass *createHexagonCFGOptimizer();
void initializeHexagonCFGOptimizerPass(PassRegistry&);

} // end namespace llvm

namespace {

class HexagonCFGOptimizer : public MachineFunctionPass {
private:
  void InvertAndChangeJumpTarget(MachineInstr &, MachineBasicBlock *);
  bool isOnFallThroughPath(MachineBasicBlock *MBB);

public:
  static char ID;

  HexagonCFGOptimizer() : MachineFunctionPass(ID) {
    initializeHexagonCFGOptimizerPass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override { return "Hexagon CFG Optimizer"; }
  bool runOnMachineFunction(MachineFunction &Fn) override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }
};

} // end anonymous namespace

char HexagonCFGOptimizer::ID = 0;

static bool IsConditionalBranch(int Opc) {
  switch (Opc) {
    case Hexagon::J2_jumpt:
    case Hexagon::J2_jumptpt:
    case Hexagon::J2_jumpf:
    case Hexagon::J2_jumpfpt:
    case Hexagon::J2_jumptnew:
    case Hexagon::J2_jumpfnew:
    case Hexagon::J2_jumptnewpt:
    case Hexagon::J2_jumpfnewpt:
      return true;
  }
  return false;
}

static bool IsUnconditionalJump(int Opc) {
  return (Opc == Hexagon::J2_jump);
}

void HexagonCFGOptimizer::InvertAndChangeJumpTarget(
    MachineInstr &MI, MachineBasicBlock *NewTarget) {
  const TargetInstrInfo *TII =
      MI.getParent()->getParent()->getSubtarget().getInstrInfo();
  int NewOpcode = 0;
  switch (MI.getOpcode()) {
  case Hexagon::J2_jumpt:
    NewOpcode = Hexagon::J2_jumpf;
    break;
  case Hexagon::J2_jumpf:
    NewOpcode = Hexagon::J2_jumpt;
    break;
  case Hexagon::J2_jumptnewpt:
    NewOpcode = Hexagon::J2_jumpfnewpt;
    break;
  case Hexagon::J2_jumpfnewpt:
    NewOpcode = Hexagon::J2_jumptnewpt;
    break;
  default:
    llvm_unreachable("Cannot handle this case");
  }

  MI.setDesc(TII->get(NewOpcode));
  MI.getOperand(1).setMBB(NewTarget);
}

bool HexagonCFGOptimizer::isOnFallThroughPath(MachineBasicBlock *MBB) {
  if (MBB->canFallThrough())
    return true;
  for (MachineBasicBlock *PB : MBB->predecessors())
    if (PB->isLayoutSuccessor(MBB) && PB->canFallThrough())
      return true;
  return false;
}

bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
  if (skipFunction(Fn.getFunction()))
    return false;

  // Loop over all of the basic blocks.
  for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
       MBBb != MBBe; ++MBBb) {
    MachineBasicBlock *MBB = &*MBBb;

    // Traverse the basic block.
    MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
    if (MII != MBB->end()) {
      MachineInstr &MI = *MII;
      int Opc = MI.getOpcode();
      if (IsConditionalBranch(Opc)) {
        // (Case 1) Transform the code if the following condition occurs:
        //   BB1: if (p0) jump BB3
        //   ...falls-through to BB2 ...
        //   BB2: jump BB4
        //   ...next block in layout is BB3...
        //   BB3: ...
        //
        //  Transform this to:
        //  BB1: if (!p0) jump BB4
        //  Remove BB2
        //  BB3: ...
        //
        // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
        //   BB1: if (p0) jump BB3
        //   ...falls-through to BB2 ...
        //   BB2: jump BB4
        //   ...other basic blocks ...
        //   BB4:
        //   ...not a fall-thru
        //   BB3: ...
        //     jump BB4
        //
        // Transform this to:
        //   BB1: if (!p0) jump BB4
        //   Remove BB2
        //   BB3: ...
        //   BB4: ...
        unsigned NumSuccs = MBB->succ_size();
        MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
        MachineBasicBlock* FirstSucc = *SI;
        MachineBasicBlock* SecondSucc = *(++SI);
        MachineBasicBlock* LayoutSucc = nullptr;
        MachineBasicBlock* JumpAroundTarget = nullptr;

        if (MBB->isLayoutSuccessor(FirstSucc)) {
          LayoutSucc = FirstSucc;
          JumpAroundTarget = SecondSucc;
        } else if (MBB->isLayoutSuccessor(SecondSucc)) {
          LayoutSucc = SecondSucc;
          JumpAroundTarget = FirstSucc;
        } else {
          // Odd case...cannot handle.
        }

        // The target of the unconditional branch must be JumpAroundTarget.
        // TODO: If not, we should not invert the unconditional branch.
        MachineBasicBlock* CondBranchTarget = nullptr;
        if (MI.getOpcode() == Hexagon::J2_jumpt ||
            MI.getOpcode() == Hexagon::J2_jumpf) {
          CondBranchTarget = MI.getOperand(1).getMBB();
        }

        if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
          continue;
        }

        if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
          // Ensure that BB2 has one instruction -- an unconditional jump.
          if ((LayoutSucc->size() == 1) &&
              IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
            assert(JumpAroundTarget && "jump target is needed to process second basic block");
            MachineBasicBlock* UncondTarget =
              LayoutSucc->front().getOperand(0).getMBB();
            // Check if the layout successor of BB2 is BB3.
            bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
            bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
              !JumpAroundTarget->empty() &&
              IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
              JumpAroundTarget->pred_size() == 1 &&
              JumpAroundTarget->succ_size() == 1;

            if (case1 || case2) {
              InvertAndChangeJumpTarget(MI, UncondTarget);
              MBB->replaceSuccessor(JumpAroundTarget, UncondTarget);

              // Remove the unconditional branch in LayoutSucc.
              LayoutSucc->erase(LayoutSucc->begin());
              LayoutSucc->replaceSuccessor(UncondTarget, JumpAroundTarget);

              // This code performs the conversion for case 2, which moves
              // the block to the fall-thru case (BB3 in the code above).
              if (case2 && !case1) {
                JumpAroundTarget->moveAfter(LayoutSucc);
                // only move a block if it doesn't have a fall-thru. otherwise
                // the CFG will be incorrect.
                if (!isOnFallThroughPath(UncondTarget))
                  UncondTarget->moveAfter(JumpAroundTarget);
              }

              // Correct live-in information. Is used by post-RA scheduler
              // The live-in to LayoutSucc is now all values live-in to
              // JumpAroundTarget.
              std::vector<MachineBasicBlock::RegisterMaskPair> OrigLiveIn(
                  LayoutSucc->livein_begin(), LayoutSucc->livein_end());
              std::vector<MachineBasicBlock::RegisterMaskPair> NewLiveIn(
                  JumpAroundTarget->livein_begin(),
                  JumpAroundTarget->livein_end());
              for (const auto &OrigLI : OrigLiveIn)
                LayoutSucc->removeLiveIn(OrigLI.PhysReg);
              for (const auto &NewLI : NewLiveIn)
                LayoutSucc->addLiveIn(NewLI);
            }
          }
        }
      }
    }
  }
  return true;
}

//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//

INITIALIZE_PASS(HexagonCFGOptimizer, "hexagon-cfg", "Hexagon CFG Optimizer",
                false, false)

FunctionPass *llvm::createHexagonCFGOptimizer() {
  return new HexagonCFGOptimizer();
}