reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
//===- ARCInstrInfo.cpp - ARC Instruction Information -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the ARC implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "ARCInstrInfo.h"
#include "ARC.h"
#include "ARCMachineFunctionInfo.h"
#include "ARCSubtarget.h"
#include "MCTargetDesc/ARCInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TargetRegistry.h"

using namespace llvm;

#define GET_INSTRINFO_CTOR_DTOR
#include "ARCGenInstrInfo.inc"

#define DEBUG_TYPE "arc-inst-info"

enum AddrIncType {
    NoAddInc = 0,
    PreInc   = 1,
    PostInc  = 2,
    Scaled   = 3
};

enum TSFlagsConstants {
    TSF_AddrModeOff = 0,
    TSF_AddModeMask = 3
};

// Pin the vtable to this file.
void ARCInstrInfo::anchor() {}

ARCInstrInfo::ARCInstrInfo()
    : ARCGenInstrInfo(ARC::ADJCALLSTACKDOWN, ARC::ADJCALLSTACKUP), RI() {}

static bool isZeroImm(const MachineOperand &Op) {
  return Op.isImm() && Op.getImm() == 0;
}

static bool isLoad(int Opcode) {
  return Opcode == ARC::LD_rs9 || Opcode == ARC::LDH_rs9 ||
         Opcode == ARC::LDB_rs9;
}

static bool isStore(int Opcode) {
  return Opcode == ARC::ST_rs9 || Opcode == ARC::STH_rs9 ||
         Opcode == ARC::STB_rs9;
}

/// If the specified machine instruction is a direct
/// load from a stack slot, return the virtual or physical register number of
/// the destination along with the FrameIndex of the loaded stack slot.  If
/// not, return 0.  This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
unsigned ARCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
                                           int &FrameIndex) const {
  int Opcode = MI.getOpcode();
  if (isLoad(Opcode)) {
    if ((MI.getOperand(1).isFI()) &&  // is a stack slot
        (MI.getOperand(2).isImm()) && // the imm is zero
        (isZeroImm(MI.getOperand(2)))) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
  }
  return 0;
}

/// If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
/// the source reg along with the FrameIndex of the loaded stack slot.  If
/// not, return 0.  This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
unsigned ARCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
                                          int &FrameIndex) const {
  int Opcode = MI.getOpcode();
  if (isStore(Opcode)) {
    if ((MI.getOperand(1).isFI()) &&  // is a stack slot
        (MI.getOperand(2).isImm()) && // the imm is zero
        (isZeroImm(MI.getOperand(2)))) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
  }
  return 0;
}

/// Return the inverse of passed condition, i.e. turning COND_E to COND_NE.
static ARCCC::CondCode GetOppositeBranchCondition(ARCCC::CondCode CC) {
  switch (CC) {
  default:
    llvm_unreachable("Illegal condition code!");
  case ARCCC::EQ:
    return ARCCC::NE;
  case ARCCC::NE:
    return ARCCC::EQ;
  case ARCCC::LO:
    return ARCCC::HS;
  case ARCCC::HS:
    return ARCCC::LO;
  case ARCCC::GT:
    return ARCCC::LE;
  case ARCCC::GE:
    return ARCCC::LT;
  case ARCCC::VS:
    return ARCCC::VC;
  case ARCCC::VC:
    return ARCCC::VS;
  case ARCCC::LT:
    return ARCCC::GE;
  case ARCCC::LE:
    return ARCCC::GT;
  case ARCCC::HI:
    return ARCCC::LS;
  case ARCCC::LS:
    return ARCCC::HI;
  case ARCCC::NZ:
    return ARCCC::Z;
  case ARCCC::Z:
    return ARCCC::NZ;
  }
}

static bool isUncondBranchOpcode(int Opc) { return Opc == ARC::BR; }

static bool isCondBranchOpcode(int Opc) {
  return Opc == ARC::BRcc_rr_p || Opc == ARC::BRcc_ru6_p;
}

static bool isJumpOpcode(int Opc) { return Opc == ARC::J; }

/// Analyze the branching code at the end of MBB, returning
/// true if it cannot be understood (e.g. it's a switch dispatch or isn't
/// implemented for a target).  Upon success, this returns false and returns
/// with the following information in various cases:
///
/// 1. If this block ends with no branches (it just falls through to its succ)
///    just return false, leaving TBB/FBB null.
/// 2. If this block ends with only an unconditional branch, it sets TBB to be
///    the destination block.
/// 3. If this block ends with a conditional branch and it falls through to a
///    successor block, it sets TBB to be the branch destination block and a
///    list of operands that evaluate the condition. These operands can be
///    passed to other TargetInstrInfo methods to create new branches.
/// 4. If this block ends with a conditional branch followed by an
///    unconditional branch, it returns the 'true' destination in TBB, the
///    'false' destination in FBB, and a list of operands that evaluate the
///    condition.  These operands can be passed to other TargetInstrInfo
///    methods to create new branches.
///
/// Note that RemoveBranch and InsertBranch must be implemented to support
/// cases where this method returns success.
///
/// If AllowModify is true, then this routine is allowed to modify the basic
/// block (e.g. delete instructions after the unconditional branch).

bool ARCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                 MachineBasicBlock *&TBB,
                                 MachineBasicBlock *&FBB,
                                 SmallVectorImpl<MachineOperand> &Cond,
                                 bool AllowModify) const {
  TBB = FBB = nullptr;
  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin())
    return false;
  --I;

  while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
    // Flag to be raised on unanalyzeable instructions. This is useful in cases
    // where we want to clean up on the end of the basic block before we bail
    // out.
    bool CantAnalyze = false;

    // Skip over DEBUG values and predicated nonterminators.
    while (I->isDebugInstr() || !I->isTerminator()) {
      if (I == MBB.begin())
        return false;
      --I;
    }

    if (isJumpOpcode(I->getOpcode())) {
      // Indirect branches and jump tables can't be analyzed, but we still want
      // to clean up any instructions at the tail of the basic block.
      CantAnalyze = true;
    } else if (isUncondBranchOpcode(I->getOpcode())) {
      TBB = I->getOperand(0).getMBB();
    } else if (isCondBranchOpcode(I->getOpcode())) {
      // Bail out if we encounter multiple conditional branches.
      if (!Cond.empty())
        return true;

      assert(!FBB && "FBB should have been null.");
      FBB = TBB;
      TBB = I->getOperand(0).getMBB();
      Cond.push_back(I->getOperand(1));
      Cond.push_back(I->getOperand(2));
      Cond.push_back(I->getOperand(3));
    } else if (I->isReturn()) {
      // Returns can't be analyzed, but we should run cleanup.
      CantAnalyze = !isPredicated(*I);
    } else {
      // We encountered other unrecognized terminator. Bail out immediately.
      return true;
    }

    // Cleanup code - to be run for unpredicated unconditional branches and
    //                returns.
    if (!isPredicated(*I) && (isUncondBranchOpcode(I->getOpcode()) ||
                              isJumpOpcode(I->getOpcode()) || I->isReturn())) {
      // Forget any previous condition branch information - it no longer
      // applies.
      Cond.clear();
      FBB = nullptr;

      // If we can modify the function, delete everything below this
      // unconditional branch.
      if (AllowModify) {
        MachineBasicBlock::iterator DI = std::next(I);
        while (DI != MBB.end()) {
          MachineInstr &InstToDelete = *DI;
          ++DI;
          InstToDelete.eraseFromParent();
        }
      }
    }

    if (CantAnalyze)
      return true;

    if (I == MBB.begin())
      return false;

    --I;
  }

  // We made it past the terminators without bailing out - we must have
  // analyzed this branch successfully.
  return false;
}

unsigned ARCInstrInfo::removeBranch(MachineBasicBlock &MBB,
                                    int *BytesRemoved) const {
  assert(!BytesRemoved && "Code size not handled");
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return 0;

  if (!isUncondBranchOpcode(I->getOpcode()) &&
      !isCondBranchOpcode(I->getOpcode()))
    return 0;

  // Remove the branch.
  I->eraseFromParent();

  I = MBB.end();

  if (I == MBB.begin())
    return 1;
  --I;
  if (!isCondBranchOpcode(I->getOpcode()))
    return 1;

  // Remove the branch.
  I->eraseFromParent();
  return 2;
}

void ARCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                               MachineBasicBlock::iterator I,
                               const DebugLoc &dl, unsigned DestReg,
                               unsigned SrcReg, bool KillSrc) const {
  assert(ARC::GPR32RegClass.contains(SrcReg) &&
         "Only GPR32 src copy supported.");
  assert(ARC::GPR32RegClass.contains(DestReg) &&
         "Only GPR32 dest copy supported.");
  BuildMI(MBB, I, dl, get(ARC::MOV_rr), DestReg)
      .addReg(SrcReg, getKillRegState(KillSrc));
}

void ARCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
                                       MachineBasicBlock::iterator I,
                                       unsigned SrcReg, bool isKill,
                                       int FrameIndex,
                                       const TargetRegisterClass *RC,
                                       const TargetRegisterInfo *TRI) const {
  DebugLoc dl = MBB.findDebugLoc(I);
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  unsigned Align = MFI.getObjectAlignment(FrameIndex);

  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FrameIndex),
      MachineMemOperand::MOStore, MFI.getObjectSize(FrameIndex), Align);

  assert(MMO && "Couldn't get MachineMemOperand for store to stack.");
  assert(TRI->getSpillSize(*RC) == 4 &&
         "Only support 4-byte stores to stack now.");
  assert(ARC::GPR32RegClass.hasSubClassEq(RC) &&
         "Only support GPR32 stores to stack now.");
  LLVM_DEBUG(dbgs() << "Created store reg=" << printReg(SrcReg, TRI)
                    << " to FrameIndex=" << FrameIndex << "\n");
  BuildMI(MBB, I, dl, get(ARC::ST_rs9))
      .addReg(SrcReg, getKillRegState(isKill))
      .addFrameIndex(FrameIndex)
      .addImm(0)
      .addMemOperand(MMO);
}

void ARCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
                                        MachineBasicBlock::iterator I,
                                        unsigned DestReg, int FrameIndex,
                                        const TargetRegisterClass *RC,
                                        const TargetRegisterInfo *TRI) const {
  DebugLoc dl = MBB.findDebugLoc(I);
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  unsigned Align = MFI.getObjectAlignment(FrameIndex);
  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FrameIndex),
      MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIndex), Align);

  assert(MMO && "Couldn't get MachineMemOperand for store to stack.");
  assert(TRI->getSpillSize(*RC) == 4 &&
         "Only support 4-byte loads from stack now.");
  assert(ARC::GPR32RegClass.hasSubClassEq(RC) &&
         "Only support GPR32 stores to stack now.");
  LLVM_DEBUG(dbgs() << "Created load reg=" << printReg(DestReg, TRI)
                    << " from FrameIndex=" << FrameIndex << "\n");
  BuildMI(MBB, I, dl, get(ARC::LD_rs9))
      .addReg(DestReg, RegState::Define)
      .addFrameIndex(FrameIndex)
      .addImm(0)
      .addMemOperand(MMO);
}

/// Return the inverse opcode of the specified Branch instruction.
bool ARCInstrInfo::reverseBranchCondition(
    SmallVectorImpl<MachineOperand> &Cond) const {
  assert((Cond.size() == 3) && "Invalid ARC branch condition!");
  Cond[2].setImm(GetOppositeBranchCondition((ARCCC::CondCode)Cond[2].getImm()));
  return false;
}

MachineBasicBlock::iterator
ARCInstrInfo::loadImmediate(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MI, unsigned Reg,
                            uint64_t Value) const {
  DebugLoc dl = MBB.findDebugLoc(MI);
  if (isInt<12>(Value)) {
    return BuildMI(MBB, MI, dl, get(ARC::MOV_rs12), Reg)
        .addImm(Value)
        .getInstr();
  }
  llvm_unreachable("Need Arc long immediate instructions.");
}

unsigned ARCInstrInfo::insertBranch(MachineBasicBlock &MBB,
                                    MachineBasicBlock *TBB,
                                    MachineBasicBlock *FBB,
                                    ArrayRef<MachineOperand> Cond,
                                    const DebugLoc &dl, int *BytesAdded) const {
  assert(!BytesAdded && "Code size not handled.");

  // Shouldn't be a fall through.
  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 3 || Cond.size() == 0) &&
         "ARC branch conditions have two components!");

  if (Cond.empty()) {
    BuildMI(&MBB, dl, get(ARC::BR)).addMBB(TBB);
    return 1;
  }
  int BccOpc = Cond[1].isImm() ? ARC::BRcc_ru6_p : ARC::BRcc_rr_p;
  MachineInstrBuilder MIB = BuildMI(&MBB, dl, get(BccOpc));
  MIB.addMBB(TBB);
  for (unsigned i = 0; i < 3; i++) {
    MIB.add(Cond[i]);
  }

  // One-way conditional branch.
  if (!FBB) {
    return 1;
  }

  // Two-way conditional branch.
  BuildMI(&MBB, dl, get(ARC::BR)).addMBB(FBB);
  return 2;
}

unsigned ARCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
  if (MI.isInlineAsm()) {
    const MachineFunction *MF = MI.getParent()->getParent();
    const char *AsmStr = MI.getOperand(0).getSymbolName();
    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
  }
  return MI.getDesc().getSize();
}

bool ARCInstrInfo::isPostIncrement(const MachineInstr &MI) const {
  const MCInstrDesc &MID = MI.getDesc();
  const uint64_t F = MID.TSFlags;
  return ((F >> TSF_AddrModeOff) & TSF_AddModeMask) == PostInc;
}

bool ARCInstrInfo::isPreIncrement(const MachineInstr &MI) const {
  const MCInstrDesc &MID = MI.getDesc();
  const uint64_t F = MID.TSFlags;
  return ((F >> TSF_AddrModeOff) & TSF_AddModeMask) == PreInc;
}

bool ARCInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI,
                                        unsigned &BasePos,
                                        unsigned &OffsetPos) const {
  if (!MI.mayLoad() && !MI.mayStore())
    return false;

  BasePos = 1;
  OffsetPos = 2;

  if (isPostIncrement(MI) || isPreIncrement(MI)) {
    BasePos++;
    OffsetPos++;
  }

  if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
    return false;

  return true;
}