reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
//=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
// This pass removes unnecessary copies/moves in BBs based on a dominating
// condition.
//
// We handle three cases:
// 1. For BBs that are targets of CBZ/CBNZ instructions, we know the value of
//    the CBZ/CBNZ source register is zero on the taken/not-taken path. For
//    instance, the copy instruction in the code below can be removed because
//    the CBZW jumps to %bb.2 when w0 is zero.
//
//  %bb.1:
//    cbz w0, .LBB0_2
//  .LBB0_2:
//    mov w0, wzr  ; <-- redundant
//
// 2. If the flag setting instruction defines a register other than WZR/XZR, we
//    can remove a zero copy in some cases.
//
//  %bb.0:
//    subs w0, w1, w2
//    str w0, [x1]
//    b.ne .LBB0_2
//  %bb.1:
//    mov w0, wzr  ; <-- redundant
//    str w0, [x2]
//  .LBB0_2
//
// 3. Finally, if the flag setting instruction is a comparison against a
//    constant (i.e., ADDS[W|X]ri, SUBS[W|X]ri), we can remove a mov immediate
//    in some cases.
//
//  %bb.0:
//    subs xzr, x0, #1
//    b.eq .LBB0_1
//  .LBB0_1:
//    orr x0, xzr, #0x1  ; <-- redundant
//
// This pass should be run after register allocation.
//
// FIXME: This could also be extended to check the whole dominance subtree below
// the comparison if the compile time regression is acceptable.
//
// FIXME: Add support for handling CCMP instructions.
// FIXME: If the known register value is zero, we should be able to rewrite uses
//        to use WZR/XZR directly in some cases.
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/LiveRegUnits.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "aarch64-copyelim"

STATISTIC(NumCopiesRemoved, "Number of copies removed.");

namespace {
class AArch64RedundantCopyElimination : public MachineFunctionPass {
  const MachineRegisterInfo *MRI;
  const TargetRegisterInfo *TRI;

  // DomBBClobberedRegs is used when computing known values in the dominating
  // BB.
  LiveRegUnits DomBBClobberedRegs, DomBBUsedRegs;

  // OptBBClobberedRegs is used when optimizing away redundant copies/moves.
  LiveRegUnits OptBBClobberedRegs, OptBBUsedRegs;

public:
  static char ID;
  AArch64RedundantCopyElimination() : MachineFunctionPass(ID) {
    initializeAArch64RedundantCopyEliminationPass(
        *PassRegistry::getPassRegistry());
  }

  struct RegImm {
    MCPhysReg Reg;
    int32_t Imm;
    RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {}
  };

  bool knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB,
                          SmallVectorImpl<RegImm> &KnownRegs,
                          MachineBasicBlock::iterator &FirstUse);
  bool optimizeBlock(MachineBasicBlock *MBB);
  bool runOnMachineFunction(MachineFunction &MF) override;
  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }
  StringRef getPassName() const override {
    return "AArch64 Redundant Copy Elimination";
  }
};
char AArch64RedundantCopyElimination::ID = 0;
}

INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim",
                "AArch64 redundant copy elimination pass", false, false)

/// It's possible to determine the value of a register based on a dominating
/// condition.  To do so, this function checks to see if the basic block \p MBB
/// is the target of a conditional branch \p CondBr with an equality comparison.
/// If the branch is a CBZ/CBNZ, we know the value of its source operand is zero
/// in \p MBB for some cases.  Otherwise, we find and inspect the NZCV setting
/// instruction (e.g., SUBS, ADDS).  If this instruction defines a register
/// other than WZR/XZR, we know the value of the destination register is zero in
/// \p MMB for some cases.  In addition, if the NZCV setting instruction is
/// comparing against a constant we know the other source register is equal to
/// the constant in \p MBB for some cases.  If we find any constant values, push
/// a physical register and constant value pair onto the KnownRegs vector and
/// return true.  Otherwise, return false if no known values were found.
bool AArch64RedundantCopyElimination::knownRegValInBlock(
    MachineInstr &CondBr, MachineBasicBlock *MBB,
    SmallVectorImpl<RegImm> &KnownRegs, MachineBasicBlock::iterator &FirstUse) {
  unsigned Opc = CondBr.getOpcode();

  // Check if the current basic block is the target block to which the
  // CBZ/CBNZ instruction jumps when its Wt/Xt is zero.
  if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) &&
       MBB == CondBr.getOperand(1).getMBB()) ||
      ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) &&
       MBB != CondBr.getOperand(1).getMBB())) {
    FirstUse = CondBr;
    KnownRegs.push_back(RegImm(CondBr.getOperand(0).getReg(), 0));
    return true;
  }

  // Otherwise, must be a conditional branch.
  if (Opc != AArch64::Bcc)
    return false;

  // Must be an equality check (i.e., == or !=).
  AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(0).getImm();
  if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
    return false;

  MachineBasicBlock *BrTarget = CondBr.getOperand(1).getMBB();
  if ((CC == AArch64CC::EQ && BrTarget != MBB) ||
      (CC == AArch64CC::NE && BrTarget == MBB))
    return false;

  // Stop if we get to the beginning of PredMBB.
  MachineBasicBlock *PredMBB = *MBB->pred_begin();
  assert(PredMBB == CondBr.getParent() &&
         "Conditional branch not in predecessor block!");
  if (CondBr == PredMBB->begin())
    return false;

  // Registers clobbered in PredMBB between CondBr instruction and current
  // instruction being checked in loop.
  DomBBClobberedRegs.clear();
  DomBBUsedRegs.clear();

  // Find compare instruction that sets NZCV used by CondBr.
  MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator();
  for (MachineInstr &PredI : make_range(std::next(RIt), PredMBB->rend())) {

    bool IsCMN = false;
    switch (PredI.getOpcode()) {
    default:
      break;

    // CMN is an alias for ADDS with a dead destination register.
    case AArch64::ADDSWri:
    case AArch64::ADDSXri:
      IsCMN = true;
      LLVM_FALLTHROUGH;
    // CMP is an alias for SUBS with a dead destination register.
    case AArch64::SUBSWri:
    case AArch64::SUBSXri: {
      // Sometimes the first operand is a FrameIndex. Bail if tht happens.
      if (!PredI.getOperand(1).isReg())
        return false;
      MCPhysReg DstReg = PredI.getOperand(0).getReg();
      MCPhysReg SrcReg = PredI.getOperand(1).getReg();

      bool Res = false;
      // If we're comparing against a non-symbolic immediate and the source
      // register of the compare is not modified (including a self-clobbering
      // compare) between the compare and conditional branch we known the value
      // of the 1st source operand.
      if (PredI.getOperand(2).isImm() && DomBBClobberedRegs.available(SrcReg) &&
          SrcReg != DstReg) {
        // We've found the instruction that sets NZCV.
        int32_t KnownImm = PredI.getOperand(2).getImm();
        int32_t Shift = PredI.getOperand(3).getImm();
        KnownImm <<= Shift;
        if (IsCMN)
          KnownImm = -KnownImm;
        FirstUse = PredI;
        KnownRegs.push_back(RegImm(SrcReg, KnownImm));
        Res = true;
      }

      // If this instructions defines something other than WZR/XZR, we know it's
      // result is zero in some cases.
      if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
        return Res;

      // The destination register must not be modified between the NZCV setting
      // instruction and the conditional branch.
      if (!DomBBClobberedRegs.available(DstReg))
        return Res;

      FirstUse = PredI;
      KnownRegs.push_back(RegImm(DstReg, 0));
      return true;
    }

    // Look for NZCV setting instructions that define something other than
    // WZR/XZR.
    case AArch64::ADCSWr:
    case AArch64::ADCSXr:
    case AArch64::ADDSWrr:
    case AArch64::ADDSWrs:
    case AArch64::ADDSWrx:
    case AArch64::ADDSXrr:
    case AArch64::ADDSXrs:
    case AArch64::ADDSXrx:
    case AArch64::ADDSXrx64:
    case AArch64::ANDSWri:
    case AArch64::ANDSWrr:
    case AArch64::ANDSWrs:
    case AArch64::ANDSXri:
    case AArch64::ANDSXrr:
    case AArch64::ANDSXrs:
    case AArch64::BICSWrr:
    case AArch64::BICSWrs:
    case AArch64::BICSXrs:
    case AArch64::BICSXrr:
    case AArch64::SBCSWr:
    case AArch64::SBCSXr:
    case AArch64::SUBSWrr:
    case AArch64::SUBSWrs:
    case AArch64::SUBSWrx:
    case AArch64::SUBSXrr:
    case AArch64::SUBSXrs:
    case AArch64::SUBSXrx:
    case AArch64::SUBSXrx64: {
      MCPhysReg DstReg = PredI.getOperand(0).getReg();
      if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
        return false;

      // The destination register of the NZCV setting instruction must not be
      // modified before the conditional branch.
      if (!DomBBClobberedRegs.available(DstReg))
        return false;

      // We've found the instruction that sets NZCV whose DstReg == 0.
      FirstUse = PredI;
      KnownRegs.push_back(RegImm(DstReg, 0));
      return true;
    }
    }

    // Bail if we see an instruction that defines NZCV that we don't handle.
    if (PredI.definesRegister(AArch64::NZCV))
      return false;

    // Track clobbered and used registers.
    LiveRegUnits::accumulateUsedDefed(PredI, DomBBClobberedRegs, DomBBUsedRegs,
                                      TRI);
  }
  return false;
}

bool AArch64RedundantCopyElimination::optimizeBlock(MachineBasicBlock *MBB) {
  // Check if the current basic block has a single predecessor.
  if (MBB->pred_size() != 1)
    return false;

  // Check if the predecessor has two successors, implying the block ends in a
  // conditional branch.
  MachineBasicBlock *PredMBB = *MBB->pred_begin();
  if (PredMBB->succ_size() != 2)
    return false;

  MachineBasicBlock::iterator CondBr = PredMBB->getLastNonDebugInstr();
  if (CondBr == PredMBB->end())
    return false;

  // Keep track of the earliest point in the PredMBB block where kill markers
  // need to be removed if a COPY is removed.
  MachineBasicBlock::iterator FirstUse;
  // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ
  // or a compare (i.e., SUBS).  In the latter case, we must take care when
  // updating FirstUse when scanning for COPY instructions.  In particular, if
  // there's a COPY in between the compare and branch the COPY should not
  // update FirstUse.
  bool SeenFirstUse = false;
  // Registers that contain a known value at the start of MBB.
  SmallVector<RegImm, 4> KnownRegs;

  MachineBasicBlock::iterator Itr = std::next(CondBr);
  do {
    --Itr;

    if (!knownRegValInBlock(*Itr, MBB, KnownRegs, FirstUse))
      continue;

    // Reset the clobbered and used register units.
    OptBBClobberedRegs.clear();
    OptBBUsedRegs.clear();

    // Look backward in PredMBB for COPYs from the known reg to find other
    // registers that are known to be a constant value.
    for (auto PredI = Itr;; --PredI) {
      if (FirstUse == PredI)
        SeenFirstUse = true;

      if (PredI->isCopy()) {
        MCPhysReg CopyDstReg = PredI->getOperand(0).getReg();
        MCPhysReg CopySrcReg = PredI->getOperand(1).getReg();
        for (auto &KnownReg : KnownRegs) {
          if (!OptBBClobberedRegs.available(KnownReg.Reg))
            continue;
          // If we have X = COPY Y, and Y is known to be zero, then now X is
          // known to be zero.
          if (CopySrcReg == KnownReg.Reg &&
              OptBBClobberedRegs.available(CopyDstReg)) {
            KnownRegs.push_back(RegImm(CopyDstReg, KnownReg.Imm));
            if (SeenFirstUse)
              FirstUse = PredI;
            break;
          }
          // If we have X = COPY Y, and X is known to be zero, then now Y is
          // known to be zero.
          if (CopyDstReg == KnownReg.Reg &&
              OptBBClobberedRegs.available(CopySrcReg)) {
            KnownRegs.push_back(RegImm(CopySrcReg, KnownReg.Imm));
            if (SeenFirstUse)
              FirstUse = PredI;
            break;
          }
        }
      }

      // Stop if we get to the beginning of PredMBB.
      if (PredI == PredMBB->begin())
        break;

      LiveRegUnits::accumulateUsedDefed(*PredI, OptBBClobberedRegs,
                                        OptBBUsedRegs, TRI);
      // Stop if all of the known-zero regs have been clobbered.
      if (all_of(KnownRegs, [&](RegImm KnownReg) {
            return !OptBBClobberedRegs.available(KnownReg.Reg);
          }))
        break;
    }
    break;

  } while (Itr != PredMBB->begin() && Itr->isTerminator());

  // We've not found a registers with a known value, time to bail out.
  if (KnownRegs.empty())
    return false;

  bool Changed = false;
  // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB.
  SmallSetVector<unsigned, 4> UsedKnownRegs;
  MachineBasicBlock::iterator LastChange = MBB->begin();
  // Remove redundant copy/move instructions unless KnownReg is modified.
  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
    MachineInstr *MI = &*I;
    ++I;
    bool RemovedMI = false;
    bool IsCopy = MI->isCopy();
    bool IsMoveImm = MI->isMoveImmediate();
    if (IsCopy || IsMoveImm) {
      Register DefReg = MI->getOperand(0).getReg();
      Register SrcReg = IsCopy ? MI->getOperand(1).getReg() : Register();
      int64_t SrcImm = IsMoveImm ? MI->getOperand(1).getImm() : 0;
      if (!MRI->isReserved(DefReg) &&
          ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) ||
           IsMoveImm)) {
        for (RegImm &KnownReg : KnownRegs) {
          if (KnownReg.Reg != DefReg &&
              !TRI->isSuperRegister(DefReg, KnownReg.Reg))
            continue;

          // For a copy, the known value must be a zero.
          if (IsCopy && KnownReg.Imm != 0)
            continue;

          if (IsMoveImm) {
            // For a move immediate, the known immediate must match the source
            // immediate.
            if (KnownReg.Imm != SrcImm)
              continue;

            // Don't remove a move immediate that implicitly defines the upper
            // bits when only the lower 32 bits are known.
            MCPhysReg CmpReg = KnownReg.Reg;
            if (any_of(MI->implicit_operands(), [CmpReg](MachineOperand &O) {
                  return !O.isDead() && O.isReg() && O.isDef() &&
                         O.getReg() != CmpReg;
                }))
              continue;
          }

          if (IsCopy)
            LLVM_DEBUG(dbgs() << "Remove redundant Copy : " << *MI);
          else
            LLVM_DEBUG(dbgs() << "Remove redundant Move : " << *MI);

          MI->eraseFromParent();
          Changed = true;
          LastChange = I;
          NumCopiesRemoved++;
          UsedKnownRegs.insert(KnownReg.Reg);
          RemovedMI = true;
          break;
        }
      }
    }

    // Skip to the next instruction if we removed the COPY/MovImm.
    if (RemovedMI)
      continue;

    // Remove any regs the MI clobbers from the KnownConstRegs set.
    for (unsigned RI = 0; RI < KnownRegs.size();)
      if (MI->modifiesRegister(KnownRegs[RI].Reg, TRI)) {
        std::swap(KnownRegs[RI], KnownRegs[KnownRegs.size() - 1]);
        KnownRegs.pop_back();
        // Don't increment RI since we need to now check the swapped-in
        // KnownRegs[RI].
      } else {
        ++RI;
      }

    // Continue until the KnownRegs set is empty.
    if (KnownRegs.empty())
      break;
  }

  if (!Changed)
    return false;

  // Add newly used regs to the block's live-in list if they aren't there
  // already.
  for (MCPhysReg KnownReg : UsedKnownRegs)
    if (!MBB->isLiveIn(KnownReg))
      MBB->addLiveIn(KnownReg);

  // Clear kills in the range where changes were made.  This is conservative,
  // but should be okay since kill markers are being phased out.
  LLVM_DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse
                    << "\tLastChange: " << *LastChange);
  for (MachineInstr &MMI : make_range(FirstUse, PredMBB->end()))
    MMI.clearKillInfo();
  for (MachineInstr &MMI : make_range(MBB->begin(), LastChange))
    MMI.clearKillInfo();

  return true;
}

bool AArch64RedundantCopyElimination::runOnMachineFunction(
    MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;
  TRI = MF.getSubtarget().getRegisterInfo();
  MRI = &MF.getRegInfo();

  // Resize the clobbered and used register unit trackers.  We do this once per
  // function.
  DomBBClobberedRegs.init(*TRI);
  DomBBUsedRegs.init(*TRI);
  OptBBClobberedRegs.init(*TRI);
  OptBBUsedRegs.init(*TRI);

  bool Changed = false;
  for (MachineBasicBlock &MBB : MF)
    Changed |= optimizeBlock(&MBB);
  return Changed;
}

FunctionPass *llvm::createAArch64RedundantCopyEliminationPass() {
  return new AArch64RedundantCopyElimination();
}