reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
//===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that collect the Linker Optimization Hint (LOH).
// This pass should be run at the very end of the compilation flow, just before
// assembly printer.
// To be useful for the linker, the LOH must be printed into the assembly file.
//
// A LOH describes a sequence of instructions that may be optimized by the
// linker.
// This same sequence cannot be optimized by the compiler because some of
// the information will be known at link time.
// For instance, consider the following sequence:
//     L1: adrp xA, sym@PAGE
//     L2: add xB, xA, sym@PAGEOFF
//     L3: ldr xC, [xB, #imm]
// This sequence can be turned into:
// A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
//     L3: ldr xC, sym+#imm
// It may also be turned into either the following more efficient
// code sequences:
// - If sym@PAGEOFF + #imm fits the encoding space of L3.
//     L1: adrp xA, sym@PAGE
//     L3: ldr xC, [xB, sym@PAGEOFF + #imm]
// - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
//     L1: adr xA, sym
//     L3: ldr xC, [xB, #imm]
//
// To be valid a LOH must meet all the requirements needed by all the related
// possible linker transformations.
// For instance, using the running example, the constraints to emit
// ".loh AdrpAddLdr" are:
// - L1, L2, and L3 instructions are of the expected type, i.e.,
//   respectively ADRP, ADD (immediate), and LD.
// - The result of L1 is used only by L2.
// - The register argument (xA) used in the ADD instruction is defined
//   only by L1.
// - The result of L2 is used only by L3.
// - The base address (xB) in L3 is defined only L2.
// - The ADRP in L1 and the ADD in L2 must reference the same symbol using
//   @PAGE/@PAGEOFF with no additional constants
//
// Currently supported LOHs are:
// * So called non-ADRP-related:
//   - .loh AdrpAddLdr L1, L2, L3:
//     L1: adrp xA, sym@PAGE
//     L2: add xB, xA, sym@PAGEOFF
//     L3: ldr xC, [xB, #imm]
//   - .loh AdrpLdrGotLdr L1, L2, L3:
//     L1: adrp xA, sym@GOTPAGE
//     L2: ldr xB, [xA, sym@GOTPAGEOFF]
//     L3: ldr xC, [xB, #imm]
//   - .loh AdrpLdr L1, L3:
//     L1: adrp xA, sym@PAGE
//     L3: ldr xC, [xA, sym@PAGEOFF]
//   - .loh AdrpAddStr L1, L2, L3:
//     L1: adrp xA, sym@PAGE
//     L2: add xB, xA, sym@PAGEOFF
//     L3: str xC, [xB, #imm]
//   - .loh AdrpLdrGotStr L1, L2, L3:
//     L1: adrp xA, sym@GOTPAGE
//     L2: ldr xB, [xA, sym@GOTPAGEOFF]
//     L3: str xC, [xB, #imm]
//   - .loh AdrpAdd L1, L2:
//     L1: adrp xA, sym@PAGE
//     L2: add xB, xA, sym@PAGEOFF
//   For all these LOHs, L1, L2, L3 form a simple chain:
//   L1 result is used only by L2 and L2 result by L3.
//   L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
//   by L1.
// All these LOHs aim at using more efficient load/store patterns by folding
// some instructions used to compute the address directly into the load/store.
//
// * So called ADRP-related:
//  - .loh AdrpAdrp L2, L1:
//    L2: ADRP xA, sym1@PAGE
//    L1: ADRP xA, sym2@PAGE
//    L2 dominates L1 and xA is not redifined between L2 and L1
// This LOH aims at getting rid of redundant ADRP instructions.
//
// The overall design for emitting the LOHs is:
// 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
// 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
//     1. Associates them a label.
//     2. Emits them in a MCStreamer (EmitLOHDirective).
//         - The MCMachOStreamer records them into the MCAssembler.
//         - The MCAsmStreamer prints them.
//         - Other MCStreamers ignore them.
//     3. Closes the MCStreamer:
//         - The MachObjectWriter gets them from the MCAssembler and writes
//           them in the object file.
//         - Other ObjectWriters ignore them.
//===----------------------------------------------------------------------===//

#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;

#define DEBUG_TYPE "aarch64-collect-loh"

STATISTIC(NumADRPSimpleCandidate,
          "Number of simplifiable ADRP dominate by another");
STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");

#define AARCH64_COLLECT_LOH_NAME "AArch64 Collect Linker Optimization Hint (LOH)"

namespace {

struct AArch64CollectLOH : public MachineFunctionPass {
  static char ID;
  AArch64CollectLOH() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

  StringRef getPassName() const override { return AARCH64_COLLECT_LOH_NAME; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    MachineFunctionPass::getAnalysisUsage(AU);
    AU.setPreservesAll();
  }
};

char AArch64CollectLOH::ID = 0;

} // end anonymous namespace.

INITIALIZE_PASS(AArch64CollectLOH, "aarch64-collect-loh",
                AARCH64_COLLECT_LOH_NAME, false, false)

static bool canAddBePartOfLOH(const MachineInstr &MI) {
  // Check immediate to see if the immediate is an address.
  switch (MI.getOperand(2).getType()) {
  default:
    return false;
  case MachineOperand::MO_GlobalAddress:
  case MachineOperand::MO_JumpTableIndex:
  case MachineOperand::MO_ConstantPoolIndex:
  case MachineOperand::MO_BlockAddress:
    return true;
  }
}

/// Answer the following question: Can Def be one of the definition
/// involved in a part of a LOH?
static bool canDefBePartOfLOH(const MachineInstr &MI) {
  // Accept ADRP, ADDLow and LOADGot.
  switch (MI.getOpcode()) {
  default:
    return false;
  case AArch64::ADRP:
    return true;
  case AArch64::ADDXri:
    return canAddBePartOfLOH(MI);
  case AArch64::LDRXui:
  case AArch64::LDRWui:
    // Check immediate to see if the immediate is an address.
    switch (MI.getOperand(2).getType()) {
    default:
      return false;
    case MachineOperand::MO_GlobalAddress:
      return MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT;
    }
  }
}

/// Check whether the given instruction can the end of a LOH chain involving a
/// store.
static bool isCandidateStore(const MachineInstr &MI, const MachineOperand &MO) {
  switch (MI.getOpcode()) {
  default:
    return false;
  case AArch64::STRBBui:
  case AArch64::STRHHui:
  case AArch64::STRBui:
  case AArch64::STRHui:
  case AArch64::STRWui:
  case AArch64::STRXui:
  case AArch64::STRSui:
  case AArch64::STRDui:
  case AArch64::STRQui:
    // We can only optimize the index operand.
    // In case we have str xA, [xA, #imm], this is two different uses
    // of xA and we cannot fold, otherwise the xA stored may be wrong,
    // even if #imm == 0.
    return MI.getOperandNo(&MO) == 1 &&
           MI.getOperand(0).getReg() != MI.getOperand(1).getReg();
  }
}

/// Check whether the given instruction can be the end of a LOH chain
/// involving a load.
static bool isCandidateLoad(const MachineInstr &MI) {
  switch (MI.getOpcode()) {
  default:
    return false;
  case AArch64::LDRSBWui:
  case AArch64::LDRSBXui:
  case AArch64::LDRSHWui:
  case AArch64::LDRSHXui:
  case AArch64::LDRSWui:
  case AArch64::LDRBui:
  case AArch64::LDRHui:
  case AArch64::LDRWui:
  case AArch64::LDRXui:
  case AArch64::LDRSui:
  case AArch64::LDRDui:
  case AArch64::LDRQui:
    return !(MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT);
  }
}

/// Check whether the given instruction can load a litteral.
static bool supportLoadFromLiteral(const MachineInstr &MI) {
  switch (MI.getOpcode()) {
  default:
    return false;
  case AArch64::LDRSWui:
  case AArch64::LDRWui:
  case AArch64::LDRXui:
  case AArch64::LDRSui:
  case AArch64::LDRDui:
  case AArch64::LDRQui:
    return true;
  }
}

/// Number of GPR registers traked by mapRegToGPRIndex()
static const unsigned N_GPR_REGS = 31;
/// Map register number to index from 0-30.
static int mapRegToGPRIndex(MCPhysReg Reg) {
  static_assert(AArch64::X28 - AArch64::X0 + 3 == N_GPR_REGS, "Number of GPRs");
  static_assert(AArch64::W30 - AArch64::W0 + 1 == N_GPR_REGS, "Number of GPRs");
  if (AArch64::X0 <= Reg && Reg <= AArch64::X28)
    return Reg - AArch64::X0;
  if (AArch64::W0 <= Reg && Reg <= AArch64::W30)
    return Reg - AArch64::W0;
  // TableGen gives "FP" and "LR" an index not adjacent to X28 so we have to
  // handle them as special cases.
  if (Reg == AArch64::FP)
    return 29;
  if (Reg == AArch64::LR)
    return 30;
  return -1;
}

/// State tracked per register.
/// The main algorithm walks backwards over a basic block maintaining this
/// datastructure for each tracked general purpose register.
struct LOHInfo {
  MCLOHType Type : 8;           ///< "Best" type of LOH possible.
  bool IsCandidate : 1;         ///< Possible LOH candidate.
  bool OneUser : 1;             ///< Found exactly one user (yet).
  bool MultiUsers : 1;          ///< Found multiple users.
  const MachineInstr *MI0;      ///< First instruction involved in the LOH.
  const MachineInstr *MI1;      ///< Second instruction involved in the LOH
                                ///  (if any).
  const MachineInstr *LastADRP; ///< Last ADRP in same register.
};

/// Update state \p Info given \p MI uses the tracked register.
static void handleUse(const MachineInstr &MI, const MachineOperand &MO,
                      LOHInfo &Info) {
  // We have multiple uses if we already found one before.
  if (Info.MultiUsers || Info.OneUser) {
    Info.IsCandidate = false;
    Info.MultiUsers = true;
    return;
  }
  Info.OneUser = true;

  // Start new LOHInfo if applicable.
  if (isCandidateLoad(MI)) {
    Info.Type = MCLOH_AdrpLdr;
    Info.IsCandidate = true;
    Info.MI0 = &MI;
    // Note that even this is AdrpLdr now, we can switch to a Ldr variant
    // later.
  } else if (isCandidateStore(MI, MO)) {
    Info.Type = MCLOH_AdrpAddStr;
    Info.IsCandidate = true;
    Info.MI0 = &MI;
    Info.MI1 = nullptr;
  } else if (MI.getOpcode() == AArch64::ADDXri) {
    Info.Type = MCLOH_AdrpAdd;
    Info.IsCandidate = true;
    Info.MI0 = &MI;
  } else if ((MI.getOpcode() == AArch64::LDRXui ||
              MI.getOpcode() == AArch64::LDRWui) &&
             MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) {
    Info.Type = MCLOH_AdrpLdrGot;
    Info.IsCandidate = true;
    Info.MI0 = &MI;
  }
}

/// Update state \p Info given the tracked register is clobbered.
static void handleClobber(LOHInfo &Info) {
  Info.IsCandidate = false;
  Info.OneUser = false;
  Info.MultiUsers = false;
  Info.LastADRP = nullptr;
}

/// Update state \p Info given that \p MI is possibly the middle instruction
/// of an LOH involving 3 instructions.
static bool handleMiddleInst(const MachineInstr &MI, LOHInfo &DefInfo,
                             LOHInfo &OpInfo) {
  if (!DefInfo.IsCandidate || (&DefInfo != &OpInfo && OpInfo.OneUser))
    return false;
  // Copy LOHInfo for dest register to LOHInfo for source register.
  if (&DefInfo != &OpInfo) {
    OpInfo = DefInfo;
    // Invalidate \p DefInfo because we track it in \p OpInfo now.
    handleClobber(DefInfo);
  } else
    DefInfo.LastADRP = nullptr;

  // Advance state machine.
  assert(OpInfo.IsCandidate && "Expect valid state");
  if (MI.getOpcode() == AArch64::ADDXri && canAddBePartOfLOH(MI)) {
    if (OpInfo.Type == MCLOH_AdrpLdr) {
      OpInfo.Type = MCLOH_AdrpAddLdr;
      OpInfo.IsCandidate = true;
      OpInfo.MI1 = &MI;
      return true;
    } else if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
      OpInfo.Type = MCLOH_AdrpAddStr;
      OpInfo.IsCandidate = true;
      OpInfo.MI1 = &MI;
      return true;
    }
  } else {
    assert((MI.getOpcode() == AArch64::LDRXui ||
            MI.getOpcode() == AArch64::LDRWui) &&
           "Expect LDRXui or LDRWui");
    assert((MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) &&
           "Expected GOT relocation");
    if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
      OpInfo.Type = MCLOH_AdrpLdrGotStr;
      OpInfo.IsCandidate = true;
      OpInfo.MI1 = &MI;
      return true;
    } else if (OpInfo.Type == MCLOH_AdrpLdr) {
      OpInfo.Type = MCLOH_AdrpLdrGotLdr;
      OpInfo.IsCandidate = true;
      OpInfo.MI1 = &MI;
      return true;
    }
  }
  return false;
}

/// Update state when seeing and ADRP instruction.
static void handleADRP(const MachineInstr &MI, AArch64FunctionInfo &AFI,
                       LOHInfo &Info) {
  if (Info.LastADRP != nullptr) {
    LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAdrp:\n"
                      << '\t' << MI << '\t' << *Info.LastADRP);
    AFI.addLOHDirective(MCLOH_AdrpAdrp, {&MI, Info.LastADRP});
    ++NumADRPSimpleCandidate;
  }

  // Produce LOH directive if possible.
  if (Info.IsCandidate) {
    switch (Info.Type) {
    case MCLOH_AdrpAdd:
      LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAdd:\n"
                        << '\t' << MI << '\t' << *Info.MI0);
      AFI.addLOHDirective(MCLOH_AdrpAdd, {&MI, Info.MI0});
      ++NumADRSimpleCandidate;
      break;
    case MCLOH_AdrpLdr:
      if (supportLoadFromLiteral(*Info.MI0)) {
        LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdr:\n"
                          << '\t' << MI << '\t' << *Info.MI0);
        AFI.addLOHDirective(MCLOH_AdrpLdr, {&MI, Info.MI0});
        ++NumADRPToLDR;
      }
      break;
    case MCLOH_AdrpAddLdr:
      LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAddLdr:\n"
                        << '\t' << MI << '\t' << *Info.MI1 << '\t'
                        << *Info.MI0);
      AFI.addLOHDirective(MCLOH_AdrpAddLdr, {&MI, Info.MI1, Info.MI0});
      ++NumADDToLDR;
      break;
    case MCLOH_AdrpAddStr:
      if (Info.MI1 != nullptr) {
        LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAddStr:\n"
                          << '\t' << MI << '\t' << *Info.MI1 << '\t'
                          << *Info.MI0);
        AFI.addLOHDirective(MCLOH_AdrpAddStr, {&MI, Info.MI1, Info.MI0});
        ++NumADDToSTR;
      }
      break;
    case MCLOH_AdrpLdrGotLdr:
      LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotLdr:\n"
                        << '\t' << MI << '\t' << *Info.MI1 << '\t'
                        << *Info.MI0);
      AFI.addLOHDirective(MCLOH_AdrpLdrGotLdr, {&MI, Info.MI1, Info.MI0});
      ++NumLDRToLDR;
      break;
    case MCLOH_AdrpLdrGotStr:
      LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotStr:\n"
                        << '\t' << MI << '\t' << *Info.MI1 << '\t'
                        << *Info.MI0);
      AFI.addLOHDirective(MCLOH_AdrpLdrGotStr, {&MI, Info.MI1, Info.MI0});
      ++NumLDRToSTR;
      break;
    case MCLOH_AdrpLdrGot:
      LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGot:\n"
                        << '\t' << MI << '\t' << *Info.MI0);
      AFI.addLOHDirective(MCLOH_AdrpLdrGot, {&MI, Info.MI0});
      break;
    case MCLOH_AdrpAdrp:
      llvm_unreachable("MCLOH_AdrpAdrp not used in state machine");
    }
  }

  handleClobber(Info);
  Info.LastADRP = &MI;
}

static void handleRegMaskClobber(const uint32_t *RegMask, MCPhysReg Reg,
                                 LOHInfo *LOHInfos) {
  if (!MachineOperand::clobbersPhysReg(RegMask, Reg))
    return;
  int Idx = mapRegToGPRIndex(Reg);
  if (Idx >= 0)
    handleClobber(LOHInfos[Idx]);
}

static void handleNormalInst(const MachineInstr &MI, LOHInfo *LOHInfos) {
  // Handle defs and regmasks.
  for (const MachineOperand &MO : MI.operands()) {
    if (MO.isRegMask()) {
      const uint32_t *RegMask = MO.getRegMask();
      for (MCPhysReg Reg : AArch64::GPR32RegClass)
        handleRegMaskClobber(RegMask, Reg, LOHInfos);
      for (MCPhysReg Reg : AArch64::GPR64RegClass)
        handleRegMaskClobber(RegMask, Reg, LOHInfos);
      continue;
    }
    if (!MO.isReg() || !MO.isDef())
      continue;
    int Idx = mapRegToGPRIndex(MO.getReg());
    if (Idx < 0)
      continue;
    handleClobber(LOHInfos[Idx]);
  }
  // Handle uses.

  SmallSet<int, 4> UsesSeen;
  for (const MachineOperand &MO : MI.uses()) {
    if (!MO.isReg() || !MO.readsReg())
      continue;
    int Idx = mapRegToGPRIndex(MO.getReg());
    if (Idx < 0)
      continue;

    // Multiple uses of the same register within a single instruction don't
    // count as MultiUser or block optimization. This is especially important on
    // arm64_32, where any memory operation is likely to be an explicit use of
    // xN and an implicit use of wN (the base address register).
    if (!UsesSeen.count(Idx)) {
      handleUse(MI, MO, LOHInfos[Idx]);
      UsesSeen.insert(Idx);
    }
  }
}

bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  LLVM_DEBUG(dbgs() << "********** AArch64 Collect LOH **********\n"
                    << "Looking in function " << MF.getName() << '\n');

  LOHInfo LOHInfos[N_GPR_REGS];
  AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
  for (const MachineBasicBlock &MBB : MF) {
    // Reset register tracking state.
    memset(LOHInfos, 0, sizeof(LOHInfos));
    // Live-out registers are used.
    for (const MachineBasicBlock *Succ : MBB.successors()) {
      for (const auto &LI : Succ->liveins()) {
        int RegIdx = mapRegToGPRIndex(LI.PhysReg);
        if (RegIdx >= 0)
          LOHInfos[RegIdx].OneUser = true;
      }
    }

    // Walk the basic block backwards and update the per register state machine
    // in the process.
    for (const MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
      unsigned Opcode = MI.getOpcode();
      switch (Opcode) {
      case AArch64::ADDXri:
      case AArch64::LDRXui:
      case AArch64::LDRWui:
        if (canDefBePartOfLOH(MI)) {
          const MachineOperand &Def = MI.getOperand(0);
          const MachineOperand &Op = MI.getOperand(1);
          assert(Def.isReg() && Def.isDef() && "Expected reg def");
          assert(Op.isReg() && Op.isUse() && "Expected reg use");
          int DefIdx = mapRegToGPRIndex(Def.getReg());
          int OpIdx = mapRegToGPRIndex(Op.getReg());
          if (DefIdx >= 0 && OpIdx >= 0 &&
              handleMiddleInst(MI, LOHInfos[DefIdx], LOHInfos[OpIdx]))
            continue;
        }
        break;
      case AArch64::ADRP:
        const MachineOperand &Op0 = MI.getOperand(0);
        int Idx = mapRegToGPRIndex(Op0.getReg());
        if (Idx >= 0) {
          handleADRP(MI, AFI, LOHInfos[Idx]);
          continue;
        }
        break;
      }
      handleNormalInst(MI, LOHInfos);
    }
  }

  // Return "no change": The pass only collects information.
  return false;
}

FunctionPass *llvm::createAArch64CollectLOHPass() {
  return new AArch64CollectLOH();
}