reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
//===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the SplitAnalysis class as well as mutator functions for
// live range splitting.
//
//===----------------------------------------------------------------------===//

#include "SplitKit.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveRangeCalc.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <limits>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumFinished, "Number of splits finished");
STATISTIC(NumSimple,   "Number of splits that were simple");
STATISTIC(NumCopies,   "Number of copies inserted for splitting");
STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");

//===----------------------------------------------------------------------===//
//                     Last Insert Point Analysis
//===----------------------------------------------------------------------===//

InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
                                         unsigned BBNum)
    : LIS(lis), LastInsertPoint(BBNum) {}

SlotIndex
InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
                                            const MachineBasicBlock &MBB) {
  unsigned Num = MBB.getNumber();
  std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
  SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);

  SmallVector<const MachineBasicBlock *, 1> EHPadSuccessors;
  for (const MachineBasicBlock *SMBB : MBB.successors())
    if (SMBB->isEHPad())
      EHPadSuccessors.push_back(SMBB);

  // Compute insert points on the first call. The pair is independent of the
  // current live interval.
  if (!LIP.first.isValid()) {
    MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
    if (FirstTerm == MBB.end())
      LIP.first = MBBEnd;
    else
      LIP.first = LIS.getInstructionIndex(*FirstTerm);

    // If there is a landing pad successor, also find the call instruction.
    if (EHPadSuccessors.empty())
      return LIP.first;
    // There may not be a call instruction (?) in which case we ignore LPad.
    LIP.second = LIP.first;
    for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin();
         I != E;) {
      --I;
      if (I->isCall()) {
        LIP.second = LIS.getInstructionIndex(*I);
        break;
      }
    }
  }

  // If CurLI is live into a landing pad successor, move the last insert point
  // back to the call that may throw.
  if (!LIP.second)
    return LIP.first;

  if (none_of(EHPadSuccessors, [&](const MachineBasicBlock *EHPad) {
        return LIS.isLiveInToMBB(CurLI, EHPad);
      }))
    return LIP.first;

  // Find the value leaving MBB.
  const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
  if (!VNI)
    return LIP.first;

  // If the value leaving MBB was defined after the call in MBB, it can't
  // really be live-in to the landing pad.  This can happen if the landing pad
  // has a PHI, and this register is undef on the exceptional edge.
  // <rdar://problem/10664933>
  if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
    return LIP.first;

  // Value is properly live-in to the landing pad.
  // Only allow inserts before the call.
  return LIP.second;
}

MachineBasicBlock::iterator
InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
                                            MachineBasicBlock &MBB) {
  SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
  if (LIP == LIS.getMBBEndIdx(&MBB))
    return MBB.end();
  return LIS.getInstructionFromIndex(LIP);
}

//===----------------------------------------------------------------------===//
//                                 Split Analysis
//===----------------------------------------------------------------------===//

SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
                             const MachineLoopInfo &mli)
    : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
      TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}

void SplitAnalysis::clear() {
  UseSlots.clear();
  UseBlocks.clear();
  ThroughBlocks.clear();
  CurLI = nullptr;
  DidRepairRange = false;
}

/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
void SplitAnalysis::analyzeUses() {
  assert(UseSlots.empty() && "Call clear first");

  // First get all the defs from the interval values. This provides the correct
  // slots for early clobbers.
  for (const VNInfo *VNI : CurLI->valnos)
    if (!VNI->isPHIDef() && !VNI->isUnused())
      UseSlots.push_back(VNI->def);

  // Get use slots form the use-def chain.
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
    if (!MO.isUndef())
      UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());

  array_pod_sort(UseSlots.begin(), UseSlots.end());

  // Remove duplicates, keeping the smaller slot for each instruction.
  // That is what we want for early clobbers.
  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
                             SlotIndex::isSameInstr),
                 UseSlots.end());

  // Compute per-live block info.
  if (!calcLiveBlockInfo()) {
    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
    // I am looking at you, RegisterCoalescer!
    DidRepairRange = true;
    ++NumRepairs;
    LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
    const_cast<LiveIntervals&>(LIS)
      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
    UseBlocks.clear();
    ThroughBlocks.clear();
    bool fixed = calcLiveBlockInfo();
    (void)fixed;
    assert(fixed && "Couldn't fix broken live interval");
  }

  LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
                    << UseBlocks.size() << " blocks, through "
                    << NumThroughBlocks << " blocks.\n");
}

/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
/// where CurLI is live.
bool SplitAnalysis::calcLiveBlockInfo() {
  ThroughBlocks.resize(MF.getNumBlockIDs());
  NumThroughBlocks = NumGapBlocks = 0;
  if (CurLI->empty())
    return true;

  LiveInterval::const_iterator LVI = CurLI->begin();
  LiveInterval::const_iterator LVE = CurLI->end();

  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
  UseI = UseSlots.begin();
  UseE = UseSlots.end();

  // Loop over basic blocks where CurLI is live.
  MachineFunction::iterator MFI =
      LIS.getMBBFromIndex(LVI->start)->getIterator();
  while (true) {
    BlockInfo BI;
    BI.MBB = &*MFI;
    SlotIndex Start, Stop;
    std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);

    // If the block contains no uses, the range must be live through. At one
    // point, RegisterCoalescer could create dangling ranges that ended
    // mid-block.
    if (UseI == UseE || *UseI >= Stop) {
      ++NumThroughBlocks;
      ThroughBlocks.set(BI.MBB->getNumber());
      // The range shouldn't end mid-block if there are no uses. This shouldn't
      // happen.
      if (LVI->end < Stop)
        return false;
    } else {
      // This block has uses. Find the first and last uses in the block.
      BI.FirstInstr = *UseI;
      assert(BI.FirstInstr >= Start);
      do ++UseI;
      while (UseI != UseE && *UseI < Stop);
      BI.LastInstr = UseI[-1];
      assert(BI.LastInstr < Stop);

      // LVI is the first live segment overlapping MBB.
      BI.LiveIn = LVI->start <= Start;

      // When not live in, the first use should be a def.
      if (!BI.LiveIn) {
        assert(LVI->start == LVI->valno->def && "Dangling Segment start");
        assert(LVI->start == BI.FirstInstr && "First instr should be a def");
        BI.FirstDef = BI.FirstInstr;
      }

      // Look for gaps in the live range.
      BI.LiveOut = true;
      while (LVI->end < Stop) {
        SlotIndex LastStop = LVI->end;
        if (++LVI == LVE || LVI->start >= Stop) {
          BI.LiveOut = false;
          BI.LastInstr = LastStop;
          break;
        }

        if (LastStop < LVI->start) {
          // There is a gap in the live range. Create duplicate entries for the
          // live-in snippet and the live-out snippet.
          ++NumGapBlocks;

          // Push the Live-in part.
          BI.LiveOut = false;
          UseBlocks.push_back(BI);
          UseBlocks.back().LastInstr = LastStop;

          // Set up BI for the live-out part.
          BI.LiveIn = false;
          BI.LiveOut = true;
          BI.FirstInstr = BI.FirstDef = LVI->start;
        }

        // A Segment that starts in the middle of the block must be a def.
        assert(LVI->start == LVI->valno->def && "Dangling Segment start");
        if (!BI.FirstDef)
          BI.FirstDef = LVI->start;
      }

      UseBlocks.push_back(BI);

      // LVI is now at LVE or LVI->end >= Stop.
      if (LVI == LVE)
        break;
    }

    // Live segment ends exactly at Stop. Move to the next segment.
    if (LVI->end == Stop && ++LVI == LVE)
      break;

    // Pick the next basic block.
    if (LVI->start < Stop)
      ++MFI;
    else
      MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
  }

  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
  return true;
}

unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
  if (cli->empty())
    return 0;
  LiveInterval *li = const_cast<LiveInterval*>(cli);
  LiveInterval::iterator LVI = li->begin();
  LiveInterval::iterator LVE = li->end();
  unsigned Count = 0;

  // Loop over basic blocks where li is live.
  MachineFunction::const_iterator MFI =
      LIS.getMBBFromIndex(LVI->start)->getIterator();
  SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
  while (true) {
    ++Count;
    LVI = li->advanceTo(LVI, Stop);
    if (LVI == LVE)
      return Count;
    do {
      ++MFI;
      Stop = LIS.getMBBEndIdx(&*MFI);
    } while (Stop <= LVI->start);
  }
}

bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
  const LiveInterval &Orig = LIS.getInterval(OrigReg);
  assert(!Orig.empty() && "Splitting empty interval?");
  LiveInterval::const_iterator I = Orig.find(Idx);

  // Range containing Idx should begin at Idx.
  if (I != Orig.end() && I->start <= Idx)
    return I->start == Idx;

  // Range does not contain Idx, previous must end at Idx.
  return I != Orig.begin() && (--I)->end == Idx;
}

void SplitAnalysis::analyze(const LiveInterval *li) {
  clear();
  CurLI = li;
  analyzeUses();
}

//===----------------------------------------------------------------------===//
//                               Split Editor
//===----------------------------------------------------------------------===//

/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
                         LiveIntervals &lis, VirtRegMap &vrm,
                         MachineDominatorTree &mdt,
                         MachineBlockFrequencyInfo &mbfi)
    : SA(sa), AA(aa), LIS(lis), VRM(vrm),
      MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
      TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
      TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
      MBFI(mbfi), RegAssign(Allocator) {}

void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
  Edit = &LRE;
  SpillMode = SM;
  OpenIdx = 0;
  RegAssign.clear();
  Values.clear();

  // Reset the LiveRangeCalc instances needed for this spill mode.
  LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
                  &LIS.getVNInfoAllocator());
  if (SpillMode)
    LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
                    &LIS.getVNInfoAllocator());

  // We don't need an AliasAnalysis since we will only be performing
  // cheap-as-a-copy remats anyway.
  Edit->anyRematerializable(nullptr);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void SplitEditor::dump() const {
  if (RegAssign.empty()) {
    dbgs() << " empty\n";
    return;
  }

  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
  dbgs() << '\n';
}
#endif

LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
                                                        LiveInterval &LI) {
  for (LiveInterval::SubRange &S : LI.subranges())
    if (S.LaneMask == LM)
      return S;
  llvm_unreachable("SubRange for this mask not found");
}

void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
  if (!LI.hasSubRanges()) {
    LI.createDeadDef(VNI);
    return;
  }

  SlotIndex Def = VNI->def;
  if (Original) {
    // If we are transferring a def from the original interval, make sure
    // to only update the subranges for which the original subranges had
    // a def at this location.
    for (LiveInterval::SubRange &S : LI.subranges()) {
      auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
      VNInfo *PV = PS.getVNInfoAt(Def);
      if (PV != nullptr && PV->def == Def)
        S.createDeadDef(Def, LIS.getVNInfoAllocator());
    }
  } else {
    // This is a new def: either from rematerialization, or from an inserted
    // copy. Since rematerialization can regenerate a definition of a sub-
    // register, we need to check which subranges need to be updated.
    const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
    assert(DefMI != nullptr);
    LaneBitmask LM;
    for (const MachineOperand &DefOp : DefMI->defs()) {
      Register R = DefOp.getReg();
      if (R != LI.reg)
        continue;
      if (unsigned SR = DefOp.getSubReg())
        LM |= TRI.getSubRegIndexLaneMask(SR);
      else {
        LM = MRI.getMaxLaneMaskForVReg(R);
        break;
      }
    }
    for (LiveInterval::SubRange &S : LI.subranges())
      if ((S.LaneMask & LM).any())
        S.createDeadDef(Def, LIS.getVNInfoAllocator());
  }
}

VNInfo *SplitEditor::defValue(unsigned RegIdx,
                              const VNInfo *ParentVNI,
                              SlotIndex Idx,
                              bool Original) {
  assert(ParentVNI && "Mapping  NULL value");
  assert(Idx.isValid() && "Invalid SlotIndex");
  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));

  // Create a new value.
  VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());

  bool Force = LI->hasSubRanges();
  ValueForcePair FP(Force ? nullptr : VNI, Force);
  // Use insert for lookup, so we can add missing values with a second lookup.
  std::pair<ValueMap::iterator, bool> InsP =
    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));

  // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
  // forced. Keep it as a simple def without any liveness.
  if (!Force && InsP.second)
    return VNI;

  // If the previous value was a simple mapping, add liveness for it now.
  if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
    addDeadDef(*LI, OldVNI, Original);

    // No longer a simple mapping.  Switch to a complex mapping. If the
    // interval has subranges, make it a forced mapping.
    InsP.first->second = ValueForcePair(nullptr, Force);
  }

  // This is a complex mapping, add liveness for VNI
  addDeadDef(*LI, VNI, Original);
  return VNI;
}

void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
  ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
  VNInfo *VNI = VFP.getPointer();

  // ParentVNI was either unmapped or already complex mapped. Either way, just
  // set the force bit.
  if (!VNI) {
    VFP.setInt(true);
    return;
  }

  // This was previously a single mapping. Make sure the old def is represented
  // by a trivial live range.
  addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);

  // Mark as complex mapped, forced.
  VFP = ValueForcePair(nullptr, true);
}

SlotIndex SplitEditor::buildSingleSubRegCopy(unsigned FromReg, unsigned ToReg,
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
    unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
  const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
  bool FirstCopy = !Def.isValid();
  MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
      .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
              | getInternalReadRegState(!FirstCopy), SubIdx)
      .addReg(FromReg, 0, SubIdx);

  BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
  SlotIndexes &Indexes = *LIS.getSlotIndexes();
  if (FirstCopy) {
    Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
  } else {
    CopyMI->bundleWithPred();
  }
  LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx);
  DestLI.refineSubRanges(Allocator, LaneMask,
                         [Def, &Allocator](LiveInterval::SubRange &SR) {
                           SR.createDeadDef(Def, Allocator);
                         },
                         Indexes, TRI);
  return Def;
}

SlotIndex SplitEditor::buildCopy(unsigned FromReg, unsigned ToReg,
    LaneBitmask LaneMask, MachineBasicBlock &MBB,
    MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
  const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
  if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
    // The full vreg is copied.
    MachineInstr *CopyMI =
        BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
    SlotIndexes &Indexes = *LIS.getSlotIndexes();
    return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
  }

  // Only a subset of lanes needs to be copied. The following is a simple
  // heuristic to construct a sequence of COPYs. We could add a target
  // specific callback if this turns out to be suboptimal.
  LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));

  // First pass: Try to find a perfectly matching subregister index. If none
  // exists find the one covering the most lanemask bits.
  SmallVector<unsigned, 8> PossibleIndexes;
  unsigned BestIdx = 0;
  unsigned BestCover = 0;
  const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
  assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
  for (unsigned Idx = 1, E = TRI.getNumSubRegIndices(); Idx < E; ++Idx) {
    // Is this index even compatible with the given class?
    if (TRI.getSubClassWithSubReg(RC, Idx) != RC)
      continue;
    LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
    // Early exit if we found a perfect match.
    if (SubRegMask == LaneMask) {
      BestIdx = Idx;
      break;
    }

    // The index must not cover any lanes outside \p LaneMask.
    if ((SubRegMask & ~LaneMask).any())
      continue;

    unsigned PopCount = SubRegMask.getNumLanes();
    PossibleIndexes.push_back(Idx);
    if (PopCount > BestCover) {
      BestCover = PopCount;
      BestIdx = Idx;
    }
  }

  // Abort if we cannot possibly implement the COPY with the given indexes.
  if (BestIdx == 0)
    report_fatal_error("Impossible to implement partial COPY");

  SlotIndex Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore,
                                        BestIdx, DestLI, Late, SlotIndex());

  // Greedy heuristic: Keep iterating keeping the best covering subreg index
  // each time.
  LaneBitmask LanesLeft = LaneMask & ~(TRI.getSubRegIndexLaneMask(BestIdx));
  while (LanesLeft.any()) {
    unsigned BestIdx = 0;
    int BestCover = std::numeric_limits<int>::min();
    for (unsigned Idx : PossibleIndexes) {
      LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(Idx);
      // Early exit if we found a perfect match.
      if (SubRegMask == LanesLeft) {
        BestIdx = Idx;
        break;
      }

      // Try to cover as much of the remaining lanes as possible but
      // as few of the already covered lanes as possible.
      int Cover = (SubRegMask & LanesLeft).getNumLanes()
                - (SubRegMask & ~LanesLeft).getNumLanes();
      if (Cover > BestCover) {
        BestCover = Cover;
        BestIdx = Idx;
      }
    }

    if (BestIdx == 0)
      report_fatal_error("Impossible to implement partial COPY");

    buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
                          DestLI, Late, Def);
    LanesLeft &= ~TRI.getSubRegIndexLaneMask(BestIdx);
  }

  return Def;
}

VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
                                   VNInfo *ParentVNI,
                                   SlotIndex UseIdx,
                                   MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator I) {
  SlotIndex Def;
  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));

  // We may be trying to avoid interference that ends at a deleted instruction,
  // so always begin RegIdx 0 early and all others late.
  bool Late = RegIdx != 0;

  // Attempt cheap-as-a-copy rematerialization.
  unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
  LiveInterval &OrigLI = LIS.getInterval(Original);
  VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);

  unsigned Reg = LI->reg;
  bool DidRemat = false;
  if (OrigVNI) {
    LiveRangeEdit::Remat RM(ParentVNI);
    RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
    if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
      Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
      ++NumRemats;
      DidRemat = true;
    }
  }
  if (!DidRemat) {
    LaneBitmask LaneMask;
    if (LI->hasSubRanges()) {
      LaneMask = LaneBitmask::getNone();
      for (LiveInterval::SubRange &S : LI->subranges())
        LaneMask |= S.LaneMask;
    } else {
      LaneMask = LaneBitmask::getAll();
    }

    ++NumCopies;
    Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
  }

  // Define the value in Reg.
  return defValue(RegIdx, ParentVNI, Def, false);
}

/// Create a new virtual register and live interval.
unsigned SplitEditor::openIntv() {
  // Create the complement as index 0.
  if (Edit->empty())
    Edit->createEmptyInterval();

  // Create the open interval.
  OpenIdx = Edit->size();
  Edit->createEmptyInterval();
  return OpenIdx;
}

void SplitEditor::selectIntv(unsigned Idx) {
  assert(Idx != 0 && "Cannot select the complement interval");
  assert(Idx < Edit->size() && "Can only select previously opened interval");
  LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
  OpenIdx = Idx;
}

SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
  assert(OpenIdx && "openIntv not called before enterIntvBefore");
  LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
  Idx = Idx.getBaseIndex();
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
  if (!ParentVNI) {
    LLVM_DEBUG(dbgs() << ": not live\n");
    return Idx;
  }
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
  assert(MI && "enterIntvBefore called with invalid index");

  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
  return VNI->def;
}

SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
  assert(OpenIdx && "openIntv not called before enterIntvAfter");
  LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
  Idx = Idx.getBoundaryIndex();
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
  if (!ParentVNI) {
    LLVM_DEBUG(dbgs() << ": not live\n");
    return Idx;
  }
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
  assert(MI && "enterIntvAfter called with invalid index");

  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
                              std::next(MachineBasicBlock::iterator(MI)));
  return VNI->def;
}

SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
  SlotIndex End = LIS.getMBBEndIdx(&MBB);
  SlotIndex Last = End.getPrevSlot();
  LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
                    << Last);
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
  if (!ParentVNI) {
    LLVM_DEBUG(dbgs() << ": not live\n");
    return End;
  }
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
                              SA.getLastSplitPointIter(&MBB));
  RegAssign.insert(VNI->def, End, OpenIdx);
  LLVM_DEBUG(dump());
  return VNI->def;
}

/// useIntv - indicate that all instructions in MBB should use OpenLI.
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
}

void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
  assert(OpenIdx && "openIntv not called before useIntv");
  LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
  RegAssign.insert(Start, End, OpenIdx);
  LLVM_DEBUG(dump());
}

SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
  LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);

  // The interval must be live beyond the instruction at Idx.
  SlotIndex Boundary = Idx.getBoundaryIndex();
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
  if (!ParentVNI) {
    LLVM_DEBUG(dbgs() << ": not live\n");
    return Boundary.getNextSlot();
  }
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
  MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
  assert(MI && "No instruction at index");

  // In spill mode, make live ranges as short as possible by inserting the copy
  // before MI.  This is only possible if that instruction doesn't redefine the
  // value.  The inserted COPY is not a kill, and we don't need to recompute
  // the source live range.  The spiller also won't try to hoist this copy.
  if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
      MI->readsVirtualRegister(Edit->getReg())) {
    forceRecompute(0, *ParentVNI);
    defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
    return Idx;
  }

  VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
                              std::next(MachineBasicBlock::iterator(MI)));
  return VNI->def;
}

SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
  LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);

  // The interval must be live into the instruction at Idx.
  Idx = Idx.getBaseIndex();
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
  if (!ParentVNI) {
    LLVM_DEBUG(dbgs() << ": not live\n");
    return Idx.getNextSlot();
  }
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');

  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
  assert(MI && "No instruction at index");
  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
  return VNI->def;
}

SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
  LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
                    << Start);

  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
  if (!ParentVNI) {
    LLVM_DEBUG(dbgs() << ": not live\n");
    return Start;
  }

  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
                              MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
  RegAssign.insert(Start, VNI->def, OpenIdx);
  LLVM_DEBUG(dump());
  return VNI->def;
}

void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
  assert(OpenIdx && "openIntv not called before overlapIntv");
  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
  assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
         "Parent changes value in extended range");
  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
         "Range cannot span basic blocks");

  // The complement interval will be extended as needed by LRCalc.extend().
  if (ParentVNI)
    forceRecompute(0, *ParentVNI);
  LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
  RegAssign.insert(Start, End, OpenIdx);
  LLVM_DEBUG(dump());
}

//===----------------------------------------------------------------------===//
//                                  Spill modes
//===----------------------------------------------------------------------===//

void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
  LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
  RegAssignMap::iterator AssignI;
  AssignI.setMap(RegAssign);

  for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
    SlotIndex Def = Copies[i]->def;
    MachineInstr *MI = LIS.getInstructionFromIndex(Def);
    assert(MI && "No instruction for back-copy");

    MachineBasicBlock *MBB = MI->getParent();
    MachineBasicBlock::iterator MBBI(MI);
    bool AtBegin;
    do AtBegin = MBBI == MBB->begin();
    while (!AtBegin && (--MBBI)->isDebugInstr());

    LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
    LIS.removeVRegDefAt(*LI, Def);
    LIS.RemoveMachineInstrFromMaps(*MI);
    MI->eraseFromParent();

    // Adjust RegAssign if a register assignment is killed at Def. We want to
    // avoid calculating the live range of the source register if possible.
    AssignI.find(Def.getPrevSlot());
    if (!AssignI.valid() || AssignI.start() >= Def)
      continue;
    // If MI doesn't kill the assigned register, just leave it.
    if (AssignI.stop() != Def)
      continue;
    unsigned RegIdx = AssignI.value();
    if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
      LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
                        << '\n');
      forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
    } else {
      SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
      LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
      AssignI.setStop(Kill);
    }
  }
}

MachineBasicBlock*
SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
                                  MachineBasicBlock *DefMBB) {
  if (MBB == DefMBB)
    return MBB;
  assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");

  const MachineLoopInfo &Loops = SA.Loops;
  const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
  MachineDomTreeNode *DefDomNode = MDT[DefMBB];

  // Best candidate so far.
  MachineBasicBlock *BestMBB = MBB;
  unsigned BestDepth = std::numeric_limits<unsigned>::max();

  while (true) {
    const MachineLoop *Loop = Loops.getLoopFor(MBB);

    // MBB isn't in a loop, it doesn't get any better.  All dominators have a
    // higher frequency by definition.
    if (!Loop) {
      LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
                        << " dominates " << printMBBReference(*MBB)
                        << " at depth 0\n");
      return MBB;
    }

    // We'll never be able to exit the DefLoop.
    if (Loop == DefLoop) {
      LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
                        << " dominates " << printMBBReference(*MBB)
                        << " in the same loop\n");
      return MBB;
    }

    // Least busy dominator seen so far.
    unsigned Depth = Loop->getLoopDepth();
    if (Depth < BestDepth) {
      BestMBB = MBB;
      BestDepth = Depth;
      LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
                        << " dominates " << printMBBReference(*MBB)
                        << " at depth " << Depth << '\n');
    }

    // Leave loop by going to the immediate dominator of the loop header.
    // This is a bigger stride than simply walking up the dominator tree.
    MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();

    // Too far up the dominator tree?
    if (!IDom || !MDT.dominates(DefDomNode, IDom))
      return BestMBB;

    MBB = IDom->getBlock();
  }
}

void SplitEditor::computeRedundantBackCopies(
    DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
  LiveInterval *Parent = &Edit->getParent();
  SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
  SmallPtrSet<VNInfo *, 8> DominatedVNIs;

  // Aggregate VNIs having the same value as ParentVNI.
  for (VNInfo *VNI : LI->valnos) {
    if (VNI->isUnused())
      continue;
    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
    EqualVNs[ParentVNI->id].insert(VNI);
  }

  // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
  // redundant VNIs to BackCopies.
  for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
    VNInfo *ParentVNI = Parent->getValNumInfo(i);
    if (!NotToHoistSet.count(ParentVNI->id))
      continue;
    SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
    SmallPtrSetIterator<VNInfo *> It2 = It1;
    for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
      It2 = It1;
      for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
        if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
          continue;

        MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
        MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
        if (MBB1 == MBB2) {
          DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
        } else if (MDT.dominates(MBB1, MBB2)) {
          DominatedVNIs.insert(*It2);
        } else if (MDT.dominates(MBB2, MBB1)) {
          DominatedVNIs.insert(*It1);
        }
      }
    }
    if (!DominatedVNIs.empty()) {
      forceRecompute(0, *ParentVNI);
      for (auto VNI : DominatedVNIs) {
        BackCopies.push_back(VNI);
      }
      DominatedVNIs.clear();
    }
  }
}

/// For SM_Size mode, find a common dominator for all the back-copies for
/// the same ParentVNI and hoist the backcopies to the dominator BB.
/// For SM_Speed mode, if the common dominator is hot and it is not beneficial
/// to do the hoisting, simply remove the dominated backcopies for the same
/// ParentVNI.
void SplitEditor::hoistCopies() {
  // Get the complement interval, always RegIdx 0.
  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
  LiveInterval *Parent = &Edit->getParent();

  // Track the nearest common dominator for all back-copies for each ParentVNI,
  // indexed by ParentVNI->id.
  using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
  SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
  // The total cost of all the back-copies for each ParentVNI.
  SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
  // The ParentVNI->id set for which hoisting back-copies are not beneficial
  // for Speed.
  DenseSet<unsigned> NotToHoistSet;

  // Find the nearest common dominator for parent values with multiple
  // back-copies.  If a single back-copy dominates, put it in DomPair.second.
  for (VNInfo *VNI : LI->valnos) {
    if (VNI->isUnused())
      continue;
    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
    assert(ParentVNI && "Parent not live at complement def");

    // Don't hoist remats.  The complement is probably going to disappear
    // completely anyway.
    if (Edit->didRematerialize(ParentVNI))
      continue;

    MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);

    DomPair &Dom = NearestDom[ParentVNI->id];

    // Keep directly defined parent values.  This is either a PHI or an
    // instruction in the complement range.  All other copies of ParentVNI
    // should be eliminated.
    if (VNI->def == ParentVNI->def) {
      LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
      Dom = DomPair(ValMBB, VNI->def);
      continue;
    }
    // Skip the singly mapped values.  There is nothing to gain from hoisting a
    // single back-copy.
    if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
      LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
      continue;
    }

    if (!Dom.first) {
      // First time we see ParentVNI.  VNI dominates itself.
      Dom = DomPair(ValMBB, VNI->def);
    } else if (Dom.first == ValMBB) {
      // Two defs in the same block.  Pick the earlier def.
      if (!Dom.second.isValid() || VNI->def < Dom.second)
        Dom.second = VNI->def;
    } else {
      // Different basic blocks. Check if one dominates.
      MachineBasicBlock *Near =
        MDT.findNearestCommonDominator(Dom.first, ValMBB);
      if (Near == ValMBB)
        // Def ValMBB dominates.
        Dom = DomPair(ValMBB, VNI->def);
      else if (Near != Dom.first)
        // None dominate. Hoist to common dominator, need new def.
        Dom = DomPair(Near, SlotIndex());
      Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
    }

    LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
                      << VNI->def << " for parent " << ParentVNI->id << '@'
                      << ParentVNI->def << " hoist to "
                      << printMBBReference(*Dom.first) << ' ' << Dom.second
                      << '\n');
  }

  // Insert the hoisted copies.
  for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
    DomPair &Dom = NearestDom[i];
    if (!Dom.first || Dom.second.isValid())
      continue;
    // This value needs a hoisted copy inserted at the end of Dom.first.
    VNInfo *ParentVNI = Parent->getValNumInfo(i);
    MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
    // Get a less loopy dominator than Dom.first.
    Dom.first = findShallowDominator(Dom.first, DefMBB);
    if (SpillMode == SM_Speed &&
        MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
      NotToHoistSet.insert(ParentVNI->id);
      continue;
    }
    SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
    Dom.second =
      defFromParent(0, ParentVNI, Last, *Dom.first,
                    SA.getLastSplitPointIter(Dom.first))->def;
  }

  // Remove redundant back-copies that are now known to be dominated by another
  // def with the same value.
  SmallVector<VNInfo*, 8> BackCopies;
  for (VNInfo *VNI : LI->valnos) {
    if (VNI->isUnused())
      continue;
    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
    const DomPair &Dom = NearestDom[ParentVNI->id];
    if (!Dom.first || Dom.second == VNI->def ||
        NotToHoistSet.count(ParentVNI->id))
      continue;
    BackCopies.push_back(VNI);
    forceRecompute(0, *ParentVNI);
  }

  // If it is not beneficial to hoist all the BackCopies, simply remove
  // redundant BackCopies in speed mode.
  if (SpillMode == SM_Speed && !NotToHoistSet.empty())
    computeRedundantBackCopies(NotToHoistSet, BackCopies);

  removeBackCopies(BackCopies);
}

/// transferValues - Transfer all possible values to the new live ranges.
/// Values that were rematerialized are left alone, they need LRCalc.extend().
bool SplitEditor::transferValues() {
  bool Skipped = false;
  RegAssignMap::const_iterator AssignI = RegAssign.begin();
  for (const LiveRange::Segment &S : Edit->getParent()) {
    LLVM_DEBUG(dbgs() << "  blit " << S << ':');
    VNInfo *ParentVNI = S.valno;
    // RegAssign has holes where RegIdx 0 should be used.
    SlotIndex Start = S.start;
    AssignI.advanceTo(Start);
    do {
      unsigned RegIdx;
      SlotIndex End = S.end;
      if (!AssignI.valid()) {
        RegIdx = 0;
      } else if (AssignI.start() <= Start) {
        RegIdx = AssignI.value();
        if (AssignI.stop() < End) {
          End = AssignI.stop();
          ++AssignI;
        }
      } else {
        RegIdx = 0;
        End = std::min(End, AssignI.start());
      }

      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
      LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
                        << printReg(Edit->get(RegIdx)) << ')');
      LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));

      // Check for a simply defined value that can be blitted directly.
      ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
      if (VNInfo *VNI = VFP.getPointer()) {
        LLVM_DEBUG(dbgs() << ':' << VNI->id);
        LI.addSegment(LiveInterval::Segment(Start, End, VNI));
        Start = End;
        continue;
      }

      // Skip values with forced recomputation.
      if (VFP.getInt()) {
        LLVM_DEBUG(dbgs() << "(recalc)");
        Skipped = true;
        Start = End;
        continue;
      }

      LiveRangeCalc &LRC = getLRCalc(RegIdx);

      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
      // so the live range is accurate. Add live-in blocks in [Start;End) to the
      // LiveInBlocks.
      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
      SlotIndex BlockStart, BlockEnd;
      std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);

      // The first block may be live-in, or it may have its own def.
      if (Start != BlockStart) {
        VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
        assert(VNI && "Missing def for complex mapped value");
        LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
        // MBB has its own def. Is it also live-out?
        if (BlockEnd <= End)
          LRC.setLiveOutValue(&*MBB, VNI);

        // Skip to the next block for live-in.
        ++MBB;
        BlockStart = BlockEnd;
      }

      // Handle the live-in blocks covered by [Start;End).
      assert(Start <= BlockStart && "Expected live-in block");
      while (BlockStart < End) {
        LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
        BlockEnd = LIS.getMBBEndIdx(&*MBB);
        if (BlockStart == ParentVNI->def) {
          // This block has the def of a parent PHI, so it isn't live-in.
          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
          VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
          assert(VNI && "Missing def for complex mapped parent PHI");
          if (End >= BlockEnd)
            LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
        } else {
          // This block needs a live-in value.  The last block covered may not
          // be live-out.
          if (End < BlockEnd)
            LRC.addLiveInBlock(LI, MDT[&*MBB], End);
          else {
            // Live-through, and we don't know the value.
            LRC.addLiveInBlock(LI, MDT[&*MBB]);
            LRC.setLiveOutValue(&*MBB, nullptr);
          }
        }
        BlockStart = BlockEnd;
        ++MBB;
      }
      Start = End;
    } while (Start != S.end);
    LLVM_DEBUG(dbgs() << '\n');
  }

  LRCalc[0].calculateValues();
  if (SpillMode)
    LRCalc[1].calculateValues();

  return Skipped;
}

static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
  const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
  if (Seg == nullptr)
    return true;
  if (Seg->end != Def.getDeadSlot())
    return false;
  // This is a dead PHI. Remove it.
  LR.removeSegment(*Seg, true);
  return true;
}

void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveRangeCalc &LRC,
                                 LiveRange &LR, LaneBitmask LM,
                                 ArrayRef<SlotIndex> Undefs) {
  for (MachineBasicBlock *P : B.predecessors()) {
    SlotIndex End = LIS.getMBBEndIdx(P);
    SlotIndex LastUse = End.getPrevSlot();
    // The predecessor may not have a live-out value. That is OK, like an
    // undef PHI operand.
    LiveInterval &PLI = Edit->getParent();
    // Need the cast because the inputs to ?: would otherwise be deemed
    // "incompatible": SubRange vs LiveInterval.
    LiveRange &PSR = !LM.all() ? getSubRangeForMask(LM, PLI)
                               : static_cast<LiveRange&>(PLI);
    if (PSR.liveAt(LastUse))
      LRC.extend(LR, End, /*PhysReg=*/0, Undefs);
  }
}

void SplitEditor::extendPHIKillRanges() {
  // Extend live ranges to be live-out for successor PHI values.

  // Visit each PHI def slot in the parent live interval. If the def is dead,
  // remove it. Otherwise, extend the live interval to reach the end indexes
  // of all predecessor blocks.

  LiveInterval &ParentLI = Edit->getParent();
  for (const VNInfo *V : ParentLI.valnos) {
    if (V->isUnused() || !V->isPHIDef())
      continue;

    unsigned RegIdx = RegAssign.lookup(V->def);
    LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
    LiveRangeCalc &LRC = getLRCalc(RegIdx);
    MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
    if (!removeDeadSegment(V->def, LI))
      extendPHIRange(B, LRC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
  }

  SmallVector<SlotIndex, 4> Undefs;
  LiveRangeCalc SubLRC;

  for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
    for (const VNInfo *V : PS.valnos) {
      if (V->isUnused() || !V->isPHIDef())
        continue;
      unsigned RegIdx = RegAssign.lookup(V->def);
      LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
      LiveInterval::SubRange &S = getSubRangeForMask(PS.LaneMask, LI);
      if (removeDeadSegment(V->def, S))
        continue;

      MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
      SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
                   &LIS.getVNInfoAllocator());
      Undefs.clear();
      LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
      extendPHIRange(B, SubLRC, S, PS.LaneMask, Undefs);
    }
  }
}

/// rewriteAssigned - Rewrite all uses of Edit->getReg().
void SplitEditor::rewriteAssigned(bool ExtendRanges) {
  struct ExtPoint {
    ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
      : MO(O), RegIdx(R), Next(N) {}

    MachineOperand MO;
    unsigned RegIdx;
    SlotIndex Next;
  };

  SmallVector<ExtPoint,4> ExtPoints;

  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
       RE = MRI.reg_end(); RI != RE;) {
    MachineOperand &MO = *RI;
    MachineInstr *MI = MO.getParent();
    ++RI;
    // LiveDebugVariables should have handled all DBG_VALUE instructions.
    if (MI->isDebugValue()) {
      LLVM_DEBUG(dbgs() << "Zapping " << *MI);
      MO.setReg(0);
      continue;
    }

    // <undef> operands don't really read the register, so it doesn't matter
    // which register we choose.  When the use operand is tied to a def, we must
    // use the same register as the def, so just do that always.
    SlotIndex Idx = LIS.getInstructionIndex(*MI);
    if (MO.isDef() || MO.isUndef())
      Idx = Idx.getRegSlot(MO.isEarlyClobber());

    // Rewrite to the mapped register at Idx.
    unsigned RegIdx = RegAssign.lookup(Idx);
    LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
    MO.setReg(LI.reg);
    LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
                      << '\t' << Idx << ':' << RegIdx << '\t' << *MI);

    // Extend liveness to Idx if the instruction reads reg.
    if (!ExtendRanges || MO.isUndef())
      continue;

    // Skip instructions that don't read Reg.
    if (MO.isDef()) {
      if (!MO.getSubReg() && !MO.isEarlyClobber())
        continue;
      // We may want to extend a live range for a partial redef, or for a use
      // tied to an early clobber.
      Idx = Idx.getPrevSlot();
      if (!Edit->getParent().liveAt(Idx))
        continue;
    } else
      Idx = Idx.getRegSlot(true);

    SlotIndex Next = Idx.getNextSlot();
    if (LI.hasSubRanges()) {
      // We have to delay extending subranges until we have seen all operands
      // defining the register. This is because a <def,read-undef> operand
      // will create an "undef" point, and we cannot extend any subranges
      // until all of them have been accounted for.
      if (MO.isUse())
        ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
    } else {
      LiveRangeCalc &LRC = getLRCalc(RegIdx);
      LRC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
    }
  }

  for (ExtPoint &EP : ExtPoints) {
    LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
    assert(LI.hasSubRanges());

    LiveRangeCalc SubLRC;
    Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
    LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
                              : MRI.getMaxLaneMaskForVReg(Reg);
    for (LiveInterval::SubRange &S : LI.subranges()) {
      if ((S.LaneMask & LM).none())
        continue;
      // The problem here can be that the new register may have been created
      // for a partially defined original register. For example:
      //   %0:subreg_hireg<def,read-undef> = ...
      //   ...
      //   %1 = COPY %0
      if (S.empty())
        continue;
      SubLRC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
                   &LIS.getVNInfoAllocator());
      SmallVector<SlotIndex, 4> Undefs;
      LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
      SubLRC.extend(S, EP.Next, 0, Undefs);
    }
  }

  for (unsigned R : *Edit) {
    LiveInterval &LI = LIS.getInterval(R);
    if (!LI.hasSubRanges())
      continue;
    LI.clear();
    LI.removeEmptySubRanges();
    LIS.constructMainRangeFromSubranges(LI);
  }
}

void SplitEditor::deleteRematVictims() {
  SmallVector<MachineInstr*, 8> Dead;
  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
    LiveInterval *LI = &LIS.getInterval(*I);
    for (const LiveRange::Segment &S : LI->segments) {
      // Dead defs end at the dead slot.
      if (S.end != S.valno->def.getDeadSlot())
        continue;
      if (S.valno->isPHIDef())
        continue;
      MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
      assert(MI && "Missing instruction for dead def");
      MI->addRegisterDead(LI->reg, &TRI);

      if (!MI->allDefsAreDead())
        continue;

      LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
      Dead.push_back(MI);
    }
  }

  if (Dead.empty())
    return;

  Edit->eliminateDeadDefs(Dead, None, &AA);
}

void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
  // Fast-path for common case.
  if (!ParentVNI.isPHIDef()) {
    for (unsigned I = 0, E = Edit->size(); I != E; ++I)
      forceRecompute(I, ParentVNI);
    return;
  }

  // Trace value through phis.
  SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
  SmallVector<const VNInfo *, 4> WorkList;
  Visited.insert(&ParentVNI);
  WorkList.push_back(&ParentVNI);

  const LiveInterval &ParentLI = Edit->getParent();
  const SlotIndexes &Indexes = *LIS.getSlotIndexes();
  do {
    const VNInfo &VNI = *WorkList.back();
    WorkList.pop_back();
    for (unsigned I = 0, E = Edit->size(); I != E; ++I)
      forceRecompute(I, VNI);
    if (!VNI.isPHIDef())
      continue;

    MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
    for (const MachineBasicBlock *Pred : MBB.predecessors()) {
      SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
      VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
      assert(PredVNI && "Value available in PhiVNI predecessor");
      if (Visited.insert(PredVNI).second)
        WorkList.push_back(PredVNI);
    }
  } while(!WorkList.empty());
}

void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
  ++NumFinished;

  // At this point, the live intervals in Edit contain VNInfos corresponding to
  // the inserted copies.

  // Add the original defs from the parent interval.
  for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
    if (ParentVNI->isUnused())
      continue;
    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
    defValue(RegIdx, ParentVNI, ParentVNI->def, true);

    // Force rematted values to be recomputed everywhere.
    // The new live ranges may be truncated.
    if (Edit->didRematerialize(ParentVNI))
      forceRecomputeVNI(*ParentVNI);
  }

  // Hoist back-copies to the complement interval when in spill mode.
  switch (SpillMode) {
  case SM_Partition:
    // Leave all back-copies as is.
    break;
  case SM_Size:
  case SM_Speed:
    // hoistCopies will behave differently between size and speed.
    hoistCopies();
  }

  // Transfer the simply mapped values, check if any are skipped.
  bool Skipped = transferValues();

  // Rewrite virtual registers, possibly extending ranges.
  rewriteAssigned(Skipped);

  if (Skipped)
    extendPHIKillRanges();
  else
    ++NumSimple;

  // Delete defs that were rematted everywhere.
  if (Skipped)
    deleteRematVictims();

  // Get rid of unused values and set phi-kill flags.
  for (unsigned Reg : *Edit) {
    LiveInterval &LI = LIS.getInterval(Reg);
    LI.removeEmptySubRanges();
    LI.RenumberValues();
  }

  // Provide a reverse mapping from original indices to Edit ranges.
  if (LRMap) {
    LRMap->clear();
    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
      LRMap->push_back(i);
  }

  // Now check if any registers were separated into multiple components.
  ConnectedVNInfoEqClasses ConEQ(LIS);
  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
    // Don't use iterators, they are invalidated by create() below.
    unsigned VReg = Edit->get(i);
    LiveInterval &LI = LIS.getInterval(VReg);
    SmallVector<LiveInterval*, 8> SplitLIs;
    LIS.splitSeparateComponents(LI, SplitLIs);
    unsigned Original = VRM.getOriginal(VReg);
    for (LiveInterval *SplitLI : SplitLIs)
      VRM.setIsSplitFromReg(SplitLI->reg, Original);

    // The new intervals all map back to i.
    if (LRMap)
      LRMap->resize(Edit->size(), i);
  }

  // Calculate spill weight and allocation hints for new intervals.
  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);

  assert(!LRMap || LRMap->size() == Edit->size());
}

//===----------------------------------------------------------------------===//
//                            Single Block Splitting
//===----------------------------------------------------------------------===//

bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
                                           bool SingleInstrs) const {
  // Always split for multiple instructions.
  if (!BI.isOneInstr())
    return true;
  // Don't split for single instructions unless explicitly requested.
  if (!SingleInstrs)
    return false;
  // Splitting a live-through range always makes progress.
  if (BI.LiveIn && BI.LiveOut)
    return true;
  // No point in isolating a copy. It has no register class constraints.
  if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
    return false;
  // Finally, don't isolate an end point that was created by earlier splits.
  return isOriginalEndpoint(BI.FirstInstr);
}

void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
  openIntv();
  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
    LastSplitPoint));
  if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
    useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
  } else {
      // The last use is after the last valid split point.
    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
    useIntv(SegStart, SegStop);
    overlapIntv(SegStop, BI.LastInstr);
  }
}

//===----------------------------------------------------------------------===//
//                    Global Live Range Splitting Support
//===----------------------------------------------------------------------===//

// These methods support a method of global live range splitting that uses a
// global algorithm to decide intervals for CFG edges. They will insert split
// points and color intervals in basic blocks while avoiding interference.
//
// Note that splitSingleBlock is also useful for blocks where both CFG edges
// are on the stack.

void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
                                        unsigned IntvIn, SlotIndex LeaveBefore,
                                        unsigned IntvOut, SlotIndex EnterAfter){
  SlotIndex Start, Stop;
  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);

  LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
                    << ") intf " << LeaveBefore << '-' << EnterAfter
                    << ", live-through " << IntvIn << " -> " << IntvOut);

  assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");

  assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
  assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
  assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");

  MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);

  if (!IntvOut) {
    LLVM_DEBUG(dbgs() << ", spill on entry.\n");
    //
    //        <<<<<<<<<    Possible LeaveBefore interference.
    //    |-----------|    Live through.
    //    -____________    Spill on entry.
    //
    selectIntv(IntvIn);
    SlotIndex Idx = leaveIntvAtTop(*MBB);
    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
    (void)Idx;
    return;
  }

  if (!IntvIn) {
    LLVM_DEBUG(dbgs() << ", reload on exit.\n");
    //
    //    >>>>>>>          Possible EnterAfter interference.
    //    |-----------|    Live through.
    //    ___________--    Reload on exit.
    //
    selectIntv(IntvOut);
    SlotIndex Idx = enterIntvAtEnd(*MBB);
    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
    (void)Idx;
    return;
  }

  if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
    LLVM_DEBUG(dbgs() << ", straight through.\n");
    //
    //    |-----------|    Live through.
    //    -------------    Straight through, same intv, no interference.
    //
    selectIntv(IntvOut);
    useIntv(Start, Stop);
    return;
  }

  // We cannot legally insert splits after LSP.
  SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
  assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");

  if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
                  LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
    LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
    //
    //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
    //    |-----------|    Live through.
    //    ------=======    Switch intervals between interference.
    //
    selectIntv(IntvOut);
    SlotIndex Idx;
    if (LeaveBefore && LeaveBefore < LSP) {
      Idx = enterIntvBefore(LeaveBefore);
      useIntv(Idx, Stop);
    } else {
      Idx = enterIntvAtEnd(*MBB);
    }
    selectIntv(IntvIn);
    useIntv(Start, Idx);
    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
    return;
  }

  LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
  //
  //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
  //    |-----------|    Live through.
  //    ==---------==    Switch intervals before/after interference.
  //
  assert(LeaveBefore <= EnterAfter && "Missed case");

  selectIntv(IntvOut);
  SlotIndex Idx = enterIntvAfter(EnterAfter);
  useIntv(Idx, Stop);
  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");

  selectIntv(IntvIn);
  Idx = leaveIntvBefore(LeaveBefore);
  useIntv(Start, Idx);
  assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
}

void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
                                  unsigned IntvIn, SlotIndex LeaveBefore) {
  SlotIndex Start, Stop;
  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);

  LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
                    << Stop << "), uses " << BI.FirstInstr << '-'
                    << BI.LastInstr << ", reg-in " << IntvIn
                    << ", leave before " << LeaveBefore
                    << (BI.LiveOut ? ", stack-out" : ", killed in block"));

  assert(IntvIn && "Must have register in");
  assert(BI.LiveIn && "Must be live-in");
  assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");

  if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
    LLVM_DEBUG(dbgs() << " before interference.\n");
    //
    //               <<<    Interference after kill.
    //     |---o---x   |    Killed in block.
    //     =========        Use IntvIn everywhere.
    //
    selectIntv(IntvIn);
    useIntv(Start, BI.LastInstr);
    return;
  }

  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());

  if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
    //
    //               <<<    Possible interference after last use.
    //     |---o---o---|    Live-out on stack.
    //     =========____    Leave IntvIn after last use.
    //
    //                 <    Interference after last use.
    //     |---o---o--o|    Live-out on stack, late last use.
    //     ============     Copy to stack after LSP, overlap IntvIn.
    //            \_____    Stack interval is live-out.
    //
    if (BI.LastInstr < LSP) {
      LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
      selectIntv(IntvIn);
      SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
      useIntv(Start, Idx);
      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
    } else {
      LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
      selectIntv(IntvIn);
      SlotIndex Idx = leaveIntvBefore(LSP);
      overlapIntv(Idx, BI.LastInstr);
      useIntv(Start, Idx);
      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
    }
    return;
  }

  // The interference is overlapping somewhere we wanted to use IntvIn. That
  // means we need to create a local interval that can be allocated a
  // different register.
  unsigned LocalIntv = openIntv();
  (void)LocalIntv;
  LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");

  if (!BI.LiveOut || BI.LastInstr < LSP) {
    //
    //           <<<<<<<    Interference overlapping uses.
    //     |---o---o---|    Live-out on stack.
    //     =====----____    Leave IntvIn before interference, then spill.
    //
    SlotIndex To = leaveIntvAfter(BI.LastInstr);
    SlotIndex From = enterIntvBefore(LeaveBefore);
    useIntv(From, To);
    selectIntv(IntvIn);
    useIntv(Start, From);
    assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
    return;
  }

  //           <<<<<<<    Interference overlapping uses.
  //     |---o---o--o|    Live-out on stack, late last use.
  //     =====-------     Copy to stack before LSP, overlap LocalIntv.
  //            \_____    Stack interval is live-out.
  //
  SlotIndex To = leaveIntvBefore(LSP);
  overlapIntv(To, BI.LastInstr);
  SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
  useIntv(From, To);
  selectIntv(IntvIn);
  useIntv(Start, From);
  assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
}

void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
                                   unsigned IntvOut, SlotIndex EnterAfter) {
  SlotIndex Start, Stop;
  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);

  LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
                    << Stop << "), uses " << BI.FirstInstr << '-'
                    << BI.LastInstr << ", reg-out " << IntvOut
                    << ", enter after " << EnterAfter
                    << (BI.LiveIn ? ", stack-in" : ", defined in block"));

  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());

  assert(IntvOut && "Must have register out");
  assert(BI.LiveOut && "Must be live-out");
  assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");

  if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
    LLVM_DEBUG(dbgs() << " after interference.\n");
    //
    //    >>>>             Interference before def.
    //    |   o---o---|    Defined in block.
    //        =========    Use IntvOut everywhere.
    //
    selectIntv(IntvOut);
    useIntv(BI.FirstInstr, Stop);
    return;
  }

  if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
    LLVM_DEBUG(dbgs() << ", reload after interference.\n");
    //
    //    >>>>             Interference before def.
    //    |---o---o---|    Live-through, stack-in.
    //    ____=========    Enter IntvOut before first use.
    //
    selectIntv(IntvOut);
    SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
    useIntv(Idx, Stop);
    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
    return;
  }

  // The interference is overlapping somewhere we wanted to use IntvOut. That
  // means we need to create a local interval that can be allocated a
  // different register.
  LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
  //
  //    >>>>>>>          Interference overlapping uses.
  //    |---o---o---|    Live-through, stack-in.
  //    ____---======    Create local interval for interference range.
  //
  selectIntv(IntvOut);
  SlotIndex Idx = enterIntvAfter(EnterAfter);
  useIntv(Idx, Stop);
  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");

  openIntv();
  SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
  useIntv(From, Idx);
}