reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
//===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the RAGreedy function pass for register allocation in
// optimized builds.
//
//===----------------------------------------------------------------------===//

#include "AllocationOrder.h"
#include "InterferenceCache.h"
#include "LiveDebugVariables.h"
#include "RegAllocBase.h"
#include "SpillPlacement.h"
#include "Spiller.h"
#include "SplitKit.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/EdgeBundles.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalUnion.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/LiveRegMatrix.h"
#include "llvm/CodeGen/LiveStacks.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <queue>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumGlobalSplits, "Number of split global live ranges");
STATISTIC(NumLocalSplits,  "Number of split local live ranges");
STATISTIC(NumEvicted,      "Number of interferences evicted");

static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
    "split-spill-mode", cl::Hidden,
    cl::desc("Spill mode for splitting live ranges"),
    cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
               clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
               clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
    cl::init(SplitEditor::SM_Speed));

static cl::opt<unsigned>
LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
                             cl::desc("Last chance recoloring max depth"),
                             cl::init(5));

static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
    "lcr-max-interf", cl::Hidden,
    cl::desc("Last chance recoloring maximum number of considered"
             " interference at a time"),
    cl::init(8));

static cl::opt<bool> ExhaustiveSearch(
    "exhaustive-register-search", cl::NotHidden,
    cl::desc("Exhaustive Search for registers bypassing the depth "
             "and interference cutoffs of last chance recoloring"),
    cl::Hidden);

static cl::opt<bool> EnableLocalReassignment(
    "enable-local-reassign", cl::Hidden,
    cl::desc("Local reassignment can yield better allocation decisions, but "
             "may be compile time intensive"),
    cl::init(false));

static cl::opt<bool> EnableDeferredSpilling(
    "enable-deferred-spilling", cl::Hidden,
    cl::desc("Instead of spilling a variable right away, defer the actual "
             "code insertion to the end of the allocation. That way the "
             "allocator might still find a suitable coloring for this "
             "variable because of other evicted variables."),
    cl::init(false));

static cl::opt<unsigned>
    HugeSizeForSplit("huge-size-for-split", cl::Hidden,
                     cl::desc("A threshold of live range size which may cause "
                              "high compile time cost in global splitting."),
                     cl::init(5000));

// FIXME: Find a good default for this flag and remove the flag.
static cl::opt<unsigned>
CSRFirstTimeCost("regalloc-csr-first-time-cost",
              cl::desc("Cost for first time use of callee-saved register."),
              cl::init(0), cl::Hidden);

static cl::opt<bool> ConsiderLocalIntervalCost(
    "consider-local-interval-cost", cl::Hidden,
    cl::desc("Consider the cost of local intervals created by a split "
             "candidate when choosing the best split candidate."),
    cl::init(false));

static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
                                       createGreedyRegisterAllocator);

namespace {

class RAGreedy : public MachineFunctionPass,
                 public RegAllocBase,
                 private LiveRangeEdit::Delegate {
  // Convenient shortcuts.
  using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
  using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
  using SmallVirtRegSet = SmallSet<unsigned, 16>;

  // context
  MachineFunction *MF;

  // Shortcuts to some useful interface.
  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  RegisterClassInfo RCI;

  // analyses
  SlotIndexes *Indexes;
  MachineBlockFrequencyInfo *MBFI;
  MachineDominatorTree *DomTree;
  MachineLoopInfo *Loops;
  MachineOptimizationRemarkEmitter *ORE;
  EdgeBundles *Bundles;
  SpillPlacement *SpillPlacer;
  LiveDebugVariables *DebugVars;
  AliasAnalysis *AA;

  // state
  std::unique_ptr<Spiller> SpillerInstance;
  PQueue Queue;
  unsigned NextCascade;

  // Live ranges pass through a number of stages as we try to allocate them.
  // Some of the stages may also create new live ranges:
  //
  // - Region splitting.
  // - Per-block splitting.
  // - Local splitting.
  // - Spilling.
  //
  // Ranges produced by one of the stages skip the previous stages when they are
  // dequeued. This improves performance because we can skip interference checks
  // that are unlikely to give any results. It also guarantees that the live
  // range splitting algorithm terminates, something that is otherwise hard to
  // ensure.
  enum LiveRangeStage {
    /// Newly created live range that has never been queued.
    RS_New,

    /// Only attempt assignment and eviction. Then requeue as RS_Split.
    RS_Assign,

    /// Attempt live range splitting if assignment is impossible.
    RS_Split,

    /// Attempt more aggressive live range splitting that is guaranteed to make
    /// progress.  This is used for split products that may not be making
    /// progress.
    RS_Split2,

    /// Live range will be spilled.  No more splitting will be attempted.
    RS_Spill,


    /// Live range is in memory. Because of other evictions, it might get moved
    /// in a register in the end.
    RS_Memory,

    /// There is nothing more we can do to this live range.  Abort compilation
    /// if it can't be assigned.
    RS_Done
  };

  // Enum CutOffStage to keep a track whether the register allocation failed
  // because of the cutoffs encountered in last chance recoloring.
  // Note: This is used as bitmask. New value should be next power of 2.
  enum CutOffStage {
    // No cutoffs encountered
    CO_None = 0,

    // lcr-max-depth cutoff encountered
    CO_Depth = 1,

    // lcr-max-interf cutoff encountered
    CO_Interf = 2
  };

  uint8_t CutOffInfo;

#ifndef NDEBUG
  static const char *const StageName[];
#endif

  // RegInfo - Keep additional information about each live range.
  struct RegInfo {
    LiveRangeStage Stage = RS_New;

    // Cascade - Eviction loop prevention. See canEvictInterference().
    unsigned Cascade = 0;

    RegInfo() = default;
  };

  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;

  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
    return ExtraRegInfo[VirtReg.reg].Stage;
  }

  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
    ExtraRegInfo.resize(MRI->getNumVirtRegs());
    ExtraRegInfo[VirtReg.reg].Stage = Stage;
  }

  template<typename Iterator>
  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
    ExtraRegInfo.resize(MRI->getNumVirtRegs());
    for (;Begin != End; ++Begin) {
      unsigned Reg = *Begin;
      if (ExtraRegInfo[Reg].Stage == RS_New)
        ExtraRegInfo[Reg].Stage = NewStage;
    }
  }

  /// Cost of evicting interference.
  struct EvictionCost {
    unsigned BrokenHints = 0; ///< Total number of broken hints.
    float MaxWeight = 0;      ///< Maximum spill weight evicted.

    EvictionCost() = default;

    bool isMax() const { return BrokenHints == ~0u; }

    void setMax() { BrokenHints = ~0u; }

    void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }

    bool operator<(const EvictionCost &O) const {
      return std::tie(BrokenHints, MaxWeight) <
             std::tie(O.BrokenHints, O.MaxWeight);
    }
  };

  /// EvictionTrack - Keeps track of past evictions in order to optimize region
  /// split decision.
  class EvictionTrack {

  public:
    using EvictorInfo =
        std::pair<unsigned /* evictor */, unsigned /* physreg */>;
    using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;

  private:
    /// Each Vreg that has been evicted in the last stage of selectOrSplit will
    /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
    EvicteeInfo Evictees;

  public:
    /// Clear all eviction information.
    void clear() { Evictees.clear(); }

    ///  Clear eviction information for the given evictee Vreg.
    /// E.g. when Vreg get's a new allocation, the old eviction info is no
    /// longer relevant.
    /// \param Evictee The evictee Vreg for whom we want to clear collected
    /// eviction info.
    void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }

    /// Track new eviction.
    /// The Evictor vreg has evicted the Evictee vreg from Physreg.
    /// \param PhysReg The physical register Evictee was evicted from.
    /// \param Evictor The evictor Vreg that evicted Evictee.
    /// \param Evictee The evictee Vreg.
    void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
      Evictees[Evictee].first = Evictor;
      Evictees[Evictee].second = PhysReg;
    }

    /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
    /// \param Evictee The evictee vreg.
    /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
    /// nobody has evicted Evictee from PhysReg.
    EvictorInfo getEvictor(unsigned Evictee) {
      if (Evictees.count(Evictee)) {
        return Evictees[Evictee];
      }

      return EvictorInfo(0, 0);
    }
  };

  // Keeps track of past evictions in order to optimize region split decision.
  EvictionTrack LastEvicted;

  // splitting state.
  std::unique_ptr<SplitAnalysis> SA;
  std::unique_ptr<SplitEditor> SE;

  /// Cached per-block interference maps
  InterferenceCache IntfCache;

  /// All basic blocks where the current register has uses.
  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;

  /// Global live range splitting candidate info.
  struct GlobalSplitCandidate {
    // Register intended for assignment, or 0.
    unsigned PhysReg;

    // SplitKit interval index for this candidate.
    unsigned IntvIdx;

    // Interference for PhysReg.
    InterferenceCache::Cursor Intf;

    // Bundles where this candidate should be live.
    BitVector LiveBundles;
    SmallVector<unsigned, 8> ActiveBlocks;

    void reset(InterferenceCache &Cache, unsigned Reg) {
      PhysReg = Reg;
      IntvIdx = 0;
      Intf.setPhysReg(Cache, Reg);
      LiveBundles.clear();
      ActiveBlocks.clear();
    }

    // Set B[i] = C for every live bundle where B[i] was NoCand.
    unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
      unsigned Count = 0;
      for (unsigned i : LiveBundles.set_bits())
        if (B[i] == NoCand) {
          B[i] = C;
          Count++;
        }
      return Count;
    }
  };

  /// Candidate info for each PhysReg in AllocationOrder.
  /// This vector never shrinks, but grows to the size of the largest register
  /// class.
  SmallVector<GlobalSplitCandidate, 32> GlobalCand;

  enum : unsigned { NoCand = ~0u };

  /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
  /// NoCand which indicates the stack interval.
  SmallVector<unsigned, 32> BundleCand;

  /// Callee-save register cost, calculated once per machine function.
  BlockFrequency CSRCost;

  /// Run or not the local reassignment heuristic. This information is
  /// obtained from the TargetSubtargetInfo.
  bool EnableLocalReassign;

  /// Enable or not the consideration of the cost of local intervals created
  /// by a split candidate when choosing the best split candidate.
  bool EnableAdvancedRASplitCost;

  /// Set of broken hints that may be reconciled later because of eviction.
  SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;

public:
  RAGreedy();

  /// Return the pass name.
  StringRef getPassName() const override { return "Greedy Register Allocator"; }

  /// RAGreedy analysis usage.
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  void releaseMemory() override;
  Spiller &spiller() override { return *SpillerInstance; }
  void enqueue(LiveInterval *LI) override;
  LiveInterval *dequeue() override;
  unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
  void aboutToRemoveInterval(LiveInterval &) override;

  /// Perform register allocation.
  bool runOnMachineFunction(MachineFunction &mf) override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoPHIs);
  }

  static char ID;

private:
  unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
                             SmallVirtRegSet &, unsigned = 0);

  bool LRE_CanEraseVirtReg(unsigned) override;
  void LRE_WillShrinkVirtReg(unsigned) override;
  void LRE_DidCloneVirtReg(unsigned, unsigned) override;
  void enqueue(PQueue &CurQueue, LiveInterval *LI);
  LiveInterval *dequeue(PQueue &CurQueue);

  BlockFrequency calcSpillCost();
  bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
  bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
  bool growRegion(GlobalSplitCandidate &Cand);
  bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
                                  unsigned BBNumber,
                                  const AllocationOrder &Order);
  bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
                               GlobalSplitCandidate &Cand, unsigned BBNumber,
                               const AllocationOrder &Order);
  BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
                                     const AllocationOrder &Order,
                                     bool *CanCauseEvictionChain);
  bool calcCompactRegion(GlobalSplitCandidate&);
  void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
  unsigned canReassign(LiveInterval &VirtReg, unsigned PrevReg);
  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&,
                            const SmallVirtRegSet&);
  bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg,
                                   SlotIndex Start, SlotIndex End,
                                   EvictionCost &MaxCost);
  unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
                                    LiveInterval &VirtReg, SlotIndex Start,
                                    SlotIndex End, float *BestEvictWeight);
  void evictInterference(LiveInterval&, unsigned,
                         SmallVectorImpl<unsigned>&);
  bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
                                  SmallLISet &RecoloringCandidates,
                                  const SmallVirtRegSet &FixedRegisters);

  unsigned tryAssign(LiveInterval&, AllocationOrder&,
                     SmallVectorImpl<unsigned>&,
                     const SmallVirtRegSet&);
  unsigned tryEvict(LiveInterval&, AllocationOrder&,
                    SmallVectorImpl<unsigned>&, unsigned,
                    const SmallVirtRegSet&);
  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
                          SmallVectorImpl<unsigned>&);
  unsigned isSplitBenefitWorthCost(LiveInterval &VirtReg);
  /// Calculate cost of region splitting.
  unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
                                    AllocationOrder &Order,
                                    BlockFrequency &BestCost,
                                    unsigned &NumCands, bool IgnoreCSR,
                                    bool *CanCauseEvictionChain = nullptr);
  /// Perform region splitting.
  unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
                         bool HasCompact,
                         SmallVectorImpl<unsigned> &NewVRegs);
  /// Check other options before using a callee-saved register for the first
  /// time.
  unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
                                 unsigned PhysReg, unsigned &CostPerUseLimit,
                                 SmallVectorImpl<unsigned> &NewVRegs);
  void initializeCSRCost();
  unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
                         SmallVectorImpl<unsigned>&);
  unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
                               SmallVectorImpl<unsigned>&);
  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
    SmallVectorImpl<unsigned>&);
  unsigned trySplit(LiveInterval&, AllocationOrder&,
                    SmallVectorImpl<unsigned>&,
                    const SmallVirtRegSet&);
  unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
                                   SmallVectorImpl<unsigned> &,
                                   SmallVirtRegSet &, unsigned);
  bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
                               SmallVirtRegSet &, unsigned);
  void tryHintRecoloring(LiveInterval &);
  void tryHintsRecoloring();

  /// Model the information carried by one end of a copy.
  struct HintInfo {
    /// The frequency of the copy.
    BlockFrequency Freq;
    /// The virtual register or physical register.
    unsigned Reg;
    /// Its currently assigned register.
    /// In case of a physical register Reg == PhysReg.
    unsigned PhysReg;

    HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
        : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
  };
  using HintsInfo = SmallVector<HintInfo, 4>;

  BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
  void collectHintInfo(unsigned, HintsInfo &);

  bool isUnusedCalleeSavedReg(unsigned PhysReg) const;

  /// Compute and report the number of spills and reloads for a loop.
  void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
                                    unsigned &FoldedReloads, unsigned &Spills,
                                    unsigned &FoldedSpills);

  /// Report the number of spills and reloads for each loop.
  void reportNumberOfSplillsReloads() {
    for (MachineLoop *L : *Loops) {
      unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
      reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
                                   FoldedSpills);
    }
  }
};

} // end anonymous namespace

char RAGreedy::ID = 0;
char &llvm::RAGreedyID = RAGreedy::ID;

INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
                "Greedy Register Allocator", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
INITIALIZE_PASS_END(RAGreedy, "greedy",
                "Greedy Register Allocator", false, false)

#ifndef NDEBUG
const char *const RAGreedy::StageName[] = {
    "RS_New",
    "RS_Assign",
    "RS_Split",
    "RS_Split2",
    "RS_Spill",
    "RS_Memory",
    "RS_Done"
};
#endif

// Hysteresis to use when comparing floats.
// This helps stabilize decisions based on float comparisons.
const float Hysteresis = (2007 / 2048.0f); // 0.97998046875

FunctionPass* llvm::createGreedyRegisterAllocator() {
  return new RAGreedy();
}

RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
}

void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<MachineBlockFrequencyInfo>();
  AU.addPreserved<MachineBlockFrequencyInfo>();
  AU.addRequired<AAResultsWrapperPass>();
  AU.addPreserved<AAResultsWrapperPass>();
  AU.addRequired<LiveIntervals>();
  AU.addPreserved<LiveIntervals>();
  AU.addRequired<SlotIndexes>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequired<LiveDebugVariables>();
  AU.addPreserved<LiveDebugVariables>();
  AU.addRequired<LiveStacks>();
  AU.addPreserved<LiveStacks>();
  AU.addRequired<MachineDominatorTree>();
  AU.addPreserved<MachineDominatorTree>();
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addRequired<VirtRegMap>();
  AU.addPreserved<VirtRegMap>();
  AU.addRequired<LiveRegMatrix>();
  AU.addPreserved<LiveRegMatrix>();
  AU.addRequired<EdgeBundles>();
  AU.addRequired<SpillPlacement>();
  AU.addRequired<MachineOptimizationRemarkEmitterPass>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

//===----------------------------------------------------------------------===//
//                     LiveRangeEdit delegate methods
//===----------------------------------------------------------------------===//

bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
  LiveInterval &LI = LIS->getInterval(VirtReg);
  if (VRM->hasPhys(VirtReg)) {
    Matrix->unassign(LI);
    aboutToRemoveInterval(LI);
    return true;
  }
  // Unassigned virtreg is probably in the priority queue.
  // RegAllocBase will erase it after dequeueing.
  // Nonetheless, clear the live-range so that the debug
  // dump will show the right state for that VirtReg.
  LI.clear();
  return false;
}

void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
  if (!VRM->hasPhys(VirtReg))
    return;

  // Register is assigned, put it back on the queue for reassignment.
  LiveInterval &LI = LIS->getInterval(VirtReg);
  Matrix->unassign(LI);
  enqueue(&LI);
}

void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
  // Cloning a register we haven't even heard about yet?  Just ignore it.
  if (!ExtraRegInfo.inBounds(Old))
    return;

  // LRE may clone a virtual register because dead code elimination causes it to
  // be split into connected components. The new components are much smaller
  // than the original, so they should get a new chance at being assigned.
  // same stage as the parent.
  ExtraRegInfo[Old].Stage = RS_Assign;
  ExtraRegInfo.grow(New);
  ExtraRegInfo[New] = ExtraRegInfo[Old];
}

void RAGreedy::releaseMemory() {
  SpillerInstance.reset();
  ExtraRegInfo.clear();
  GlobalCand.clear();
}

void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }

void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
  // Prioritize live ranges by size, assigning larger ranges first.
  // The queue holds (size, reg) pairs.
  const unsigned Size = LI->getSize();
  const unsigned Reg = LI->reg;
  assert(Register::isVirtualRegister(Reg) &&
         "Can only enqueue virtual registers");
  unsigned Prio;

  ExtraRegInfo.grow(Reg);
  if (ExtraRegInfo[Reg].Stage == RS_New)
    ExtraRegInfo[Reg].Stage = RS_Assign;

  if (ExtraRegInfo[Reg].Stage == RS_Split) {
    // Unsplit ranges that couldn't be allocated immediately are deferred until
    // everything else has been allocated.
    Prio = Size;
  } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
    // Memory operand should be considered last.
    // Change the priority such that Memory operand are assigned in
    // the reverse order that they came in.
    // TODO: Make this a member variable and probably do something about hints.
    static unsigned MemOp = 0;
    Prio = MemOp++;
  } else {
    // Giant live ranges fall back to the global assignment heuristic, which
    // prevents excessive spilling in pathological cases.
    bool ReverseLocal = TRI->reverseLocalAssignment();
    const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
    bool ForceGlobal = !ReverseLocal &&
      (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());

    if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
        LIS->intervalIsInOneMBB(*LI)) {
      // Allocate original local ranges in linear instruction order. Since they
      // are singly defined, this produces optimal coloring in the absence of
      // global interference and other constraints.
      if (!ReverseLocal)
        Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
      else {
        // Allocating bottom up may allow many short LRGs to be assigned first
        // to one of the cheap registers. This could be much faster for very
        // large blocks on targets with many physical registers.
        Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
      }
      Prio |= RC.AllocationPriority << 24;
    } else {
      // Allocate global and split ranges in long->short order. Long ranges that
      // don't fit should be spilled (or split) ASAP so they don't create
      // interference.  Mark a bit to prioritize global above local ranges.
      Prio = (1u << 29) + Size;
    }
    // Mark a higher bit to prioritize global and local above RS_Split.
    Prio |= (1u << 31);

    // Boost ranges that have a physical register hint.
    if (VRM->hasKnownPreference(Reg))
      Prio |= (1u << 30);
  }
  // The virtual register number is a tie breaker for same-sized ranges.
  // Give lower vreg numbers higher priority to assign them first.
  CurQueue.push(std::make_pair(Prio, ~Reg));
}

LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }

LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
  if (CurQueue.empty())
    return nullptr;
  LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
  CurQueue.pop();
  return LI;
}

//===----------------------------------------------------------------------===//
//                            Direct Assignment
//===----------------------------------------------------------------------===//

/// tryAssign - Try to assign VirtReg to an available register.
unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
                             AllocationOrder &Order,
                             SmallVectorImpl<unsigned> &NewVRegs,
                             const SmallVirtRegSet &FixedRegisters) {
  Order.rewind();
  unsigned PhysReg;
  while ((PhysReg = Order.next()))
    if (!Matrix->checkInterference(VirtReg, PhysReg))
      break;
  if (!PhysReg || Order.isHint())
    return PhysReg;

  // PhysReg is available, but there may be a better choice.

  // If we missed a simple hint, try to cheaply evict interference from the
  // preferred register.
  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
    if (Order.isHint(Hint)) {
      LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
      EvictionCost MaxCost;
      MaxCost.setBrokenHints(1);
      if (canEvictInterference(VirtReg, Hint, true, MaxCost, FixedRegisters)) {
        evictInterference(VirtReg, Hint, NewVRegs);
        return Hint;
      }
      // Record the missed hint, we may be able to recover
      // at the end if the surrounding allocation changed.
      SetOfBrokenHints.insert(&VirtReg);
    }

  // Try to evict interference from a cheaper alternative.
  unsigned Cost = TRI->getCostPerUse(PhysReg);

  // Most registers have 0 additional cost.
  if (!Cost)
    return PhysReg;

  LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
                    << Cost << '\n');
  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
  return CheapReg ? CheapReg : PhysReg;
}

//===----------------------------------------------------------------------===//
//                         Interference eviction
//===----------------------------------------------------------------------===//

unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
  unsigned PhysReg;
  while ((PhysReg = Order.next())) {
    if (PhysReg == PrevReg)
      continue;

    MCRegUnitIterator Units(PhysReg, TRI);
    for (; Units.isValid(); ++Units) {
      // Instantiate a "subquery", not to be confused with the Queries array.
      LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
      if (subQ.checkInterference())
        break;
    }
    // If no units have interference, break out with the current PhysReg.
    if (!Units.isValid())
      break;
  }
  if (PhysReg)
    LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
                      << printReg(PrevReg, TRI) << " to "
                      << printReg(PhysReg, TRI) << '\n');
  return PhysReg;
}

/// shouldEvict - determine if A should evict the assigned live range B. The
/// eviction policy defined by this function together with the allocation order
/// defined by enqueue() decides which registers ultimately end up being split
/// and spilled.
///
/// Cascade numbers are used to prevent infinite loops if this function is a
/// cyclic relation.
///
/// @param A          The live range to be assigned.
/// @param IsHint     True when A is about to be assigned to its preferred
///                   register.
/// @param B          The live range to be evicted.
/// @param BreaksHint True when B is already assigned to its preferred register.
bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
                           LiveInterval &B, bool BreaksHint) {
  bool CanSplit = getStage(B) < RS_Spill;

  // Be fairly aggressive about following hints as long as the evictee can be
  // split.
  if (CanSplit && IsHint && !BreaksHint)
    return true;

  if (A.weight > B.weight) {
    LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
    return true;
  }
  return false;
}

/// canEvictInterference - Return true if all interferences between VirtReg and
/// PhysReg can be evicted.
///
/// @param VirtReg Live range that is about to be assigned.
/// @param PhysReg Desired register for assignment.
/// @param IsHint  True when PhysReg is VirtReg's preferred register.
/// @param MaxCost Only look for cheaper candidates and update with new cost
///                when returning true.
/// @returns True when interference can be evicted cheaper than MaxCost.
bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
                                    bool IsHint, EvictionCost &MaxCost,
                                    const SmallVirtRegSet &FixedRegisters) {
  // It is only possible to evict virtual register interference.
  if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
    return false;

  bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);

  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
  // involved in an eviction before. If a cascade number was assigned, deny
  // evicting anything with the same or a newer cascade number. This prevents
  // infinite eviction loops.
  //
  // This works out so a register without a cascade number is allowed to evict
  // anything, and it can be evicted by anything.
  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
  if (!Cascade)
    Cascade = NextCascade;

  EvictionCost Cost;
  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
    // If there is 10 or more interferences, chances are one is heavier.
    if (Q.collectInterferingVRegs(10) >= 10)
      return false;

    // Check if any interfering live range is heavier than MaxWeight.
    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
      assert(Register::isVirtualRegister(Intf->reg) &&
             "Only expecting virtual register interference from query");

      // Do not allow eviction of a virtual register if we are in the middle
      // of last-chance recoloring and this virtual register is one that we
      // have scavenged a physical register for.
      if (FixedRegisters.count(Intf->reg))
        return false;

      // Never evict spill products. They cannot split or spill.
      if (getStage(*Intf) == RS_Done)
        return false;
      // Once a live range becomes small enough, it is urgent that we find a
      // register for it. This is indicated by an infinite spill weight. These
      // urgent live ranges get to evict almost anything.
      //
      // Also allow urgent evictions of unspillable ranges from a strictly
      // larger allocation order.
      bool Urgent = !VirtReg.isSpillable() &&
        (Intf->isSpillable() ||
         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
         RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
      // Only evict older cascades or live ranges without a cascade.
      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
      if (Cascade <= IntfCascade) {
        if (!Urgent)
          return false;
        // We permit breaking cascades for urgent evictions. It should be the
        // last resort, though, so make it really expensive.
        Cost.BrokenHints += 10;
      }
      // Would this break a satisfied hint?
      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
      // Update eviction cost.
      Cost.BrokenHints += BreaksHint;
      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
      // Abort if this would be too expensive.
      if (!(Cost < MaxCost))
        return false;
      if (Urgent)
        continue;
      // Apply the eviction policy for non-urgent evictions.
      if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
        return false;
      // If !MaxCost.isMax(), then we're just looking for a cheap register.
      // Evicting another local live range in this case could lead to suboptimal
      // coloring.
      if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
          (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
        return false;
      }
    }
  }
  MaxCost = Cost;
  return true;
}

/// Return true if all interferences between VirtReg and PhysReg between
/// Start and End can be evicted.
///
/// \param VirtReg Live range that is about to be assigned.
/// \param PhysReg Desired register for assignment.
/// \param Start   Start of range to look for interferences.
/// \param End     End of range to look for interferences.
/// \param MaxCost Only look for cheaper candidates and update with new cost
///                when returning true.
/// \return True when interference can be evicted cheaper than MaxCost.
bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
                                           unsigned PhysReg, SlotIndex Start,
                                           SlotIndex End,
                                           EvictionCost &MaxCost) {
  EvictionCost Cost;

  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);

    // Check if any interfering live range is heavier than MaxWeight.
    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
      LiveInterval *Intf = Q.interferingVRegs()[i - 1];

      // Check if interference overlast the segment in interest.
      if (!Intf->overlaps(Start, End))
        continue;

      // Cannot evict non virtual reg interference.
      if (!Register::isVirtualRegister(Intf->reg))
        return false;
      // Never evict spill products. They cannot split or spill.
      if (getStage(*Intf) == RS_Done)
        return false;

      // Would this break a satisfied hint?
      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
      // Update eviction cost.
      Cost.BrokenHints += BreaksHint;
      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
      // Abort if this would be too expensive.
      if (!(Cost < MaxCost))
        return false;
    }
  }

  if (Cost.MaxWeight == 0)
    return false;

  MaxCost = Cost;
  return true;
}

/// Return the physical register that will be best
/// candidate for eviction by a local split interval that will be created
/// between Start and End.
///
/// \param Order            The allocation order
/// \param VirtReg          Live range that is about to be assigned.
/// \param Start            Start of range to look for interferences
/// \param End              End of range to look for interferences
/// \param BestEvictweight  The eviction cost of that eviction
/// \return The PhysReg which is the best candidate for eviction and the
/// eviction cost in BestEvictweight
unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
                                            LiveInterval &VirtReg,
                                            SlotIndex Start, SlotIndex End,
                                            float *BestEvictweight) {
  EvictionCost BestEvictCost;
  BestEvictCost.setMax();
  BestEvictCost.MaxWeight = VirtReg.weight;
  unsigned BestEvicteePhys = 0;

  // Go over all physical registers and find the best candidate for eviction
  for (auto PhysReg : Order.getOrder()) {

    if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
                                     BestEvictCost))
      continue;

    // Best so far.
    BestEvicteePhys = PhysReg;
  }
  *BestEvictweight = BestEvictCost.MaxWeight;
  return BestEvicteePhys;
}

/// evictInterference - Evict any interferring registers that prevent VirtReg
/// from being assigned to Physreg. This assumes that canEvictInterference
/// returned true.
void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
                                 SmallVectorImpl<unsigned> &NewVRegs) {
  // Make sure that VirtReg has a cascade number, and assign that cascade
  // number to every evicted register. These live ranges than then only be
  // evicted by a newer cascade, preventing infinite loops.
  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
  if (!Cascade)
    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;

  LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
                    << " interference: Cascade " << Cascade << '\n');

  // Collect all interfering virtregs first.
  SmallVector<LiveInterval*, 8> Intfs;
  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
    // We usually have the interfering VRegs cached so collectInterferingVRegs()
    // should be fast, we may need to recalculate if when different physregs
    // overlap the same register unit so we had different SubRanges queried
    // against it.
    Q.collectInterferingVRegs();
    ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
    Intfs.append(IVR.begin(), IVR.end());
  }

  // Evict them second. This will invalidate the queries.
  for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
    LiveInterval *Intf = Intfs[i];
    // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
    if (!VRM->hasPhys(Intf->reg))
      continue;

    LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg);

    Matrix->unassign(*Intf);
    assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
            VirtReg.isSpillable() < Intf->isSpillable()) &&
           "Cannot decrease cascade number, illegal eviction");
    ExtraRegInfo[Intf->reg].Cascade = Cascade;
    ++NumEvicted;
    NewVRegs.push_back(Intf->reg);
  }
}

/// Returns true if the given \p PhysReg is a callee saved register and has not
/// been used for allocation yet.
bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
  unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
  if (CSR == 0)
    return false;

  return !Matrix->isPhysRegUsed(PhysReg);
}

/// tryEvict - Try to evict all interferences for a physreg.
/// @param  VirtReg Currently unassigned virtual register.
/// @param  Order   Physregs to try.
/// @return         Physreg to assign VirtReg, or 0.
unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
                            AllocationOrder &Order,
                            SmallVectorImpl<unsigned> &NewVRegs,
                            unsigned CostPerUseLimit,
                            const SmallVirtRegSet &FixedRegisters) {
  NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
                     TimePassesIsEnabled);

  // Keep track of the cheapest interference seen so far.
  EvictionCost BestCost;
  BestCost.setMax();
  unsigned BestPhys = 0;
  unsigned OrderLimit = Order.getOrder().size();

  // When we are just looking for a reduced cost per use, don't break any
  // hints, and only evict smaller spill weights.
  if (CostPerUseLimit < ~0u) {
    BestCost.BrokenHints = 0;
    BestCost.MaxWeight = VirtReg.weight;

    // Check of any registers in RC are below CostPerUseLimit.
    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
    unsigned MinCost = RegClassInfo.getMinCost(RC);
    if (MinCost >= CostPerUseLimit) {
      LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
                        << MinCost << ", no cheaper registers to be found.\n");
      return 0;
    }

    // It is normal for register classes to have a long tail of registers with
    // the same cost. We don't need to look at them if they're too expensive.
    if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
      OrderLimit = RegClassInfo.getLastCostChange(RC);
      LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
                        << " regs.\n");
    }
  }

  Order.rewind();
  while (unsigned PhysReg = Order.next(OrderLimit)) {
    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
      continue;
    // The first use of a callee-saved register in a function has cost 1.
    // Don't start using a CSR when the CostPerUseLimit is low.
    if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
      LLVM_DEBUG(
          dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
                 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
                 << '\n');
      continue;
    }

    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
                              FixedRegisters))
      continue;

    // Best so far.
    BestPhys = PhysReg;

    // Stop if the hint can be used.
    if (Order.isHint())
      break;
  }

  if (!BestPhys)
    return 0;

  evictInterference(VirtReg, BestPhys, NewVRegs);
  return BestPhys;
}

//===----------------------------------------------------------------------===//
//                              Region Splitting
//===----------------------------------------------------------------------===//

/// addSplitConstraints - Fill out the SplitConstraints vector based on the
/// interference pattern in Physreg and its aliases. Add the constraints to
/// SpillPlacement and return the static cost of this split in Cost, assuming
/// that all preferences in SplitConstraints are met.
/// Return false if there are no bundles with positive bias.
bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
                                   BlockFrequency &Cost) {
  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();

  // Reset interference dependent info.
  SplitConstraints.resize(UseBlocks.size());
  BlockFrequency StaticCost = 0;
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];

    BC.Number = BI.MBB->getNumber();
    Intf.moveToBlock(BC.Number);
    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
    BC.Exit = (BI.LiveOut &&
               !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
                  ? SpillPlacement::PrefReg
                  : SpillPlacement::DontCare;
    BC.ChangesValue = BI.FirstDef.isValid();

    if (!Intf.hasInterference())
      continue;

    // Number of spill code instructions to insert.
    unsigned Ins = 0;

    // Interference for the live-in value.
    if (BI.LiveIn) {
      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
        BC.Entry = SpillPlacement::MustSpill;
        ++Ins;
      } else if (Intf.first() < BI.FirstInstr) {
        BC.Entry = SpillPlacement::PrefSpill;
        ++Ins;
      } else if (Intf.first() < BI.LastInstr) {
        ++Ins;
      }

      // Abort if the spill cannot be inserted at the MBB' start
      if (((BC.Entry == SpillPlacement::MustSpill) ||
           (BC.Entry == SpillPlacement::PrefSpill)) &&
          SlotIndex::isEarlierInstr(BI.FirstInstr,
                                    SA->getFirstSplitPoint(BC.Number)))
        return false;
    }

    // Interference for the live-out value.
    if (BI.LiveOut) {
      if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
        BC.Exit = SpillPlacement::MustSpill;
        ++Ins;
      } else if (Intf.last() > BI.LastInstr) {
        BC.Exit = SpillPlacement::PrefSpill;
        ++Ins;
      } else if (Intf.last() > BI.FirstInstr) {
        ++Ins;
      }
    }

    // Accumulate the total frequency of inserted spill code.
    while (Ins--)
      StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
  }
  Cost = StaticCost;

  // Add constraints for use-blocks. Note that these are the only constraints
  // that may add a positive bias, it is downhill from here.
  SpillPlacer->addConstraints(SplitConstraints);
  return SpillPlacer->scanActiveBundles();
}

/// addThroughConstraints - Add constraints and links to SpillPlacer from the
/// live-through blocks in Blocks.
bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
                                     ArrayRef<unsigned> Blocks) {
  const unsigned GroupSize = 8;
  SpillPlacement::BlockConstraint BCS[GroupSize];
  unsigned TBS[GroupSize];
  unsigned B = 0, T = 0;

  for (unsigned i = 0; i != Blocks.size(); ++i) {
    unsigned Number = Blocks[i];
    Intf.moveToBlock(Number);

    if (!Intf.hasInterference()) {
      assert(T < GroupSize && "Array overflow");
      TBS[T] = Number;
      if (++T == GroupSize) {
        SpillPlacer->addLinks(makeArrayRef(TBS, T));
        T = 0;
      }
      continue;
    }

    assert(B < GroupSize && "Array overflow");
    BCS[B].Number = Number;

    // Abort if the spill cannot be inserted at the MBB' start
    MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
    if (!MBB->empty() &&
        SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
                                  SA->getFirstSplitPoint(Number)))
      return false;
    // Interference for the live-in value.
    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
      BCS[B].Entry = SpillPlacement::MustSpill;
    else
      BCS[B].Entry = SpillPlacement::PrefSpill;

    // Interference for the live-out value.
    if (Intf.last() >= SA->getLastSplitPoint(Number))
      BCS[B].Exit = SpillPlacement::MustSpill;
    else
      BCS[B].Exit = SpillPlacement::PrefSpill;

    if (++B == GroupSize) {
      SpillPlacer->addConstraints(makeArrayRef(BCS, B));
      B = 0;
    }
  }

  SpillPlacer->addConstraints(makeArrayRef(BCS, B));
  SpillPlacer->addLinks(makeArrayRef(TBS, T));
  return true;
}

bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
  // Keep track of through blocks that have not been added to SpillPlacer.
  BitVector Todo = SA->getThroughBlocks();
  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
  unsigned AddedTo = 0;
#ifndef NDEBUG
  unsigned Visited = 0;
#endif

  while (true) {
    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
    // Find new through blocks in the periphery of PrefRegBundles.
    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
      unsigned Bundle = NewBundles[i];
      // Look at all blocks connected to Bundle in the full graph.
      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
           I != E; ++I) {
        unsigned Block = *I;
        if (!Todo.test(Block))
          continue;
        Todo.reset(Block);
        // This is a new through block. Add it to SpillPlacer later.
        ActiveBlocks.push_back(Block);
#ifndef NDEBUG
        ++Visited;
#endif
      }
    }
    // Any new blocks to add?
    if (ActiveBlocks.size() == AddedTo)
      break;

    // Compute through constraints from the interference, or assume that all
    // through blocks prefer spilling when forming compact regions.
    auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
    if (Cand.PhysReg) {
      if (!addThroughConstraints(Cand.Intf, NewBlocks))
        return false;
    } else
      // Provide a strong negative bias on through blocks to prevent unwanted
      // liveness on loop backedges.
      SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
    AddedTo = ActiveBlocks.size();

    // Perhaps iterating can enable more bundles?
    SpillPlacer->iterate();
  }
  LLVM_DEBUG(dbgs() << ", v=" << Visited);
  return true;
}

/// calcCompactRegion - Compute the set of edge bundles that should be live
/// when splitting the current live range into compact regions.  Compact
/// regions can be computed without looking at interference.  They are the
/// regions formed by removing all the live-through blocks from the live range.
///
/// Returns false if the current live range is already compact, or if the
/// compact regions would form single block regions anyway.
bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
  // Without any through blocks, the live range is already compact.
  if (!SA->getNumThroughBlocks())
    return false;

  // Compact regions don't correspond to any physreg.
  Cand.reset(IntfCache, 0);

  LLVM_DEBUG(dbgs() << "Compact region bundles");

  // Use the spill placer to determine the live bundles. GrowRegion pretends
  // that all the through blocks have interference when PhysReg is unset.
  SpillPlacer->prepare(Cand.LiveBundles);

  // The static split cost will be zero since Cand.Intf reports no interference.
  BlockFrequency Cost;
  if (!addSplitConstraints(Cand.Intf, Cost)) {
    LLVM_DEBUG(dbgs() << ", none.\n");
    return false;
  }

  if (!growRegion(Cand)) {
    LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
    return false;
  }

  SpillPlacer->finish();

  if (!Cand.LiveBundles.any()) {
    LLVM_DEBUG(dbgs() << ", none.\n");
    return false;
  }

  LLVM_DEBUG({
    for (int i : Cand.LiveBundles.set_bits())
      dbgs() << " EB#" << i;
    dbgs() << ".\n";
  });
  return true;
}

/// calcSpillCost - Compute how expensive it would be to split the live range in
/// SA around all use blocks instead of forming bundle regions.
BlockFrequency RAGreedy::calcSpillCost() {
  BlockFrequency Cost = 0;
  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    unsigned Number = BI.MBB->getNumber();
    // We normally only need one spill instruction - a load or a store.
    Cost += SpillPlacer->getBlockFrequency(Number);

    // Unless the value is redefined in the block.
    if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
      Cost += SpillPlacer->getBlockFrequency(Number);
  }
  return Cost;
}

/// Check if splitting Evictee will create a local split interval in
/// basic block number BBNumber that may cause a bad eviction chain. This is
/// intended to prevent bad eviction sequences like:
/// movl	%ebp, 8(%esp)           # 4-byte Spill
/// movl	%ecx, %ebp
/// movl	%ebx, %ecx
/// movl	%edi, %ebx
/// movl	%edx, %edi
/// cltd
/// idivl	%esi
/// movl	%edi, %edx
/// movl	%ebx, %edi
/// movl	%ecx, %ebx
/// movl	%ebp, %ecx
/// movl	16(%esp), %ebp          # 4 - byte Reload
///
/// Such sequences are created in 2 scenarios:
///
/// Scenario #1:
/// %0 is evicted from physreg0 by %1.
/// Evictee %0 is intended for region splitting with split candidate
/// physreg0 (the reg %0 was evicted from).
/// Region splitting creates a local interval because of interference with the
/// evictor %1 (normally region splitting creates 2 interval, the "by reg"
/// and "by stack" intervals and local interval created when interference
/// occurs).
/// One of the split intervals ends up evicting %2 from physreg1.
/// Evictee %2 is intended for region splitting with split candidate
/// physreg1.
/// One of the split intervals ends up evicting %3 from physreg2, etc.
///
/// Scenario #2
/// %0 is evicted from physreg0 by %1.
/// %2 is evicted from physreg2 by %3 etc.
/// Evictee %0 is intended for region splitting with split candidate
/// physreg1.
/// Region splitting creates a local interval because of interference with the
/// evictor %1.
/// One of the split intervals ends up evicting back original evictor %1
/// from physreg0 (the reg %0 was evicted from).
/// Another evictee %2 is intended for region splitting with split candidate
/// physreg1.
/// One of the split intervals ends up evicting %3 from physreg2, etc.
///
/// \param Evictee  The register considered to be split.
/// \param Cand     The split candidate that determines the physical register
///                 we are splitting for and the interferences.
/// \param BBNumber The number of a BB for which the region split process will
///                 create a local split interval.
/// \param Order    The physical registers that may get evicted by a split
///                 artifact of Evictee.
/// \return True if splitting Evictee may cause a bad eviction chain, false
/// otherwise.
bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
                                          GlobalSplitCandidate &Cand,
                                          unsigned BBNumber,
                                          const AllocationOrder &Order) {
  EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
  unsigned Evictor = VregEvictorInfo.first;
  unsigned PhysReg = VregEvictorInfo.second;

  // No actual evictor.
  if (!Evictor || !PhysReg)
    return false;

  float MaxWeight = 0;
  unsigned FutureEvictedPhysReg =
      getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
                               Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);

  // The bad eviction chain occurs when either the split candidate is the
  // evicting reg or one of the split artifact will evict the evicting reg.
  if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
    return false;

  Cand.Intf.moveToBlock(BBNumber);

  // Check to see if the Evictor contains interference (with Evictee) in the
  // given BB. If so, this interference caused the eviction of Evictee from
  // PhysReg. This suggest that we will create a local interval during the
  // region split to avoid this interference This local interval may cause a bad
  // eviction chain.
  if (!LIS->hasInterval(Evictor))
    return false;
  LiveInterval &EvictorLI = LIS->getInterval(Evictor);
  if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
    return false;

  // Now, check to see if the local interval we will create is going to be
  // expensive enough to evict somebody If so, this may cause a bad eviction
  // chain.
  VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
  float splitArtifactWeight =
      VRAI.futureWeight(LIS->getInterval(Evictee),
                        Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
  if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
    return false;

  return true;
}

/// Check if splitting VirtRegToSplit will create a local split interval
/// in basic block number BBNumber that may cause a spill.
///
/// \param VirtRegToSplit The register considered to be split.
/// \param Cand           The split candidate that determines the physical
///                       register we are splitting for and the interferences.
/// \param BBNumber       The number of a BB for which the region split process
///                       will create a local split interval.
/// \param Order          The physical registers that may get evicted by a
///                       split artifact of VirtRegToSplit.
/// \return True if splitting VirtRegToSplit may cause a spill, false
/// otherwise.
bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
                                       GlobalSplitCandidate &Cand,
                                       unsigned BBNumber,
                                       const AllocationOrder &Order) {
  Cand.Intf.moveToBlock(BBNumber);

  // Check if the local interval will find a non interfereing assignment.
  for (auto PhysReg : Order.getOrder()) {
    if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
                                   Cand.Intf.last(), PhysReg))
      return false;
  }

  // Check if the local interval will evict a cheaper interval.
  float CheapestEvictWeight = 0;
  unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
      Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
      Cand.Intf.last(), &CheapestEvictWeight);

  // Have we found an interval that can be evicted?
  if (FutureEvictedPhysReg) {
    VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
    float splitArtifactWeight =
        VRAI.futureWeight(LIS->getInterval(VirtRegToSplit),
                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
    // Will the weight of the local interval be higher than the cheapest evictee
    // weight? If so it will evict it and will not cause a spill.
    if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
      return false;
  }

  // The local interval is not able to find non interferencing assignment and
  // not able to evict a less worthy interval, therfore, it can cause a spill.
  return true;
}

/// calcGlobalSplitCost - Return the global split cost of following the split
/// pattern in LiveBundles. This cost should be added to the local cost of the
/// interference pattern in SplitConstraints.
///
BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
                                             const AllocationOrder &Order,
                                             bool *CanCauseEvictionChain) {
  BlockFrequency GlobalCost = 0;
  const BitVector &LiveBundles = Cand.LiveBundles;
  unsigned VirtRegToSplit = SA->getParent().reg;
  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
    unsigned Ins = 0;

    Cand.Intf.moveToBlock(BC.Number);
    // Check wheather a local interval is going to be created during the region
    // split. Calculate adavanced spilt cost (cost of local intervals) if option
    // is enabled.
    if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
        BI.LiveOut && RegIn && RegOut) {

      if (CanCauseEvictionChain &&
          splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
        // This interference causes our eviction from this assignment, we might
        // evict somebody else and eventually someone will spill, add that cost.
        // See splitCanCauseEvictionChain for detailed description of scenarios.
        GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
        GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);

        *CanCauseEvictionChain = true;

      } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
                                         Order)) {
        // This interference causes local interval to spill, add that cost.
        GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
        GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
      }
    }

    if (BI.LiveIn)
      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
    if (BI.LiveOut)
      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
    while (Ins--)
      GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
  }

  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
    unsigned Number = Cand.ActiveBlocks[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
    bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
    if (!RegIn && !RegOut)
      continue;
    if (RegIn && RegOut) {
      // We need double spill code if this block has interference.
      Cand.Intf.moveToBlock(Number);
      if (Cand.Intf.hasInterference()) {
        GlobalCost += SpillPlacer->getBlockFrequency(Number);
        GlobalCost += SpillPlacer->getBlockFrequency(Number);

        // Check wheather a local interval is going to be created during the
        // region split.
        if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
            splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
          // This interference cause our eviction from this assignment, we might
          // evict somebody else, add that cost.
          // See splitCanCauseEvictionChain for detailed description of
          // scenarios.
          GlobalCost += SpillPlacer->getBlockFrequency(Number);
          GlobalCost += SpillPlacer->getBlockFrequency(Number);

          *CanCauseEvictionChain = true;
        }
      }
      continue;
    }
    // live-in / stack-out or stack-in live-out.
    GlobalCost += SpillPlacer->getBlockFrequency(Number);
  }
  return GlobalCost;
}

/// splitAroundRegion - Split the current live range around the regions
/// determined by BundleCand and GlobalCand.
///
/// Before calling this function, GlobalCand and BundleCand must be initialized
/// so each bundle is assigned to a valid candidate, or NoCand for the
/// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
/// objects must be initialized for the current live range, and intervals
/// created for the used candidates.
///
/// @param LREdit    The LiveRangeEdit object handling the current split.
/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
///                  must appear in this list.
void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
                                 ArrayRef<unsigned> UsedCands) {
  // These are the intervals created for new global ranges. We may create more
  // intervals for local ranges.
  const unsigned NumGlobalIntvs = LREdit.size();
  LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
                    << " globals.\n");
  assert(NumGlobalIntvs && "No global intervals configured");

  // Isolate even single instructions when dealing with a proper sub-class.
  // That guarantees register class inflation for the stack interval because it
  // is all copies.
  unsigned Reg = SA->getParent().reg;
  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));

  // First handle all the blocks with uses.
  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    unsigned Number = BI.MBB->getNumber();
    unsigned IntvIn = 0, IntvOut = 0;
    SlotIndex IntfIn, IntfOut;
    if (BI.LiveIn) {
      unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
      if (CandIn != NoCand) {
        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
        IntvIn = Cand.IntvIdx;
        Cand.Intf.moveToBlock(Number);
        IntfIn = Cand.Intf.first();
      }
    }
    if (BI.LiveOut) {
      unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
      if (CandOut != NoCand) {
        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
        IntvOut = Cand.IntvIdx;
        Cand.Intf.moveToBlock(Number);
        IntfOut = Cand.Intf.last();
      }
    }

    // Create separate intervals for isolated blocks with multiple uses.
    if (!IntvIn && !IntvOut) {
      LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
      if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
        SE->splitSingleBlock(BI);
      continue;
    }

    if (IntvIn && IntvOut)
      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
    else if (IntvIn)
      SE->splitRegInBlock(BI, IntvIn, IntfIn);
    else
      SE->splitRegOutBlock(BI, IntvOut, IntfOut);
  }

  // Handle live-through blocks. The relevant live-through blocks are stored in
  // the ActiveBlocks list with each candidate. We need to filter out
  // duplicates.
  BitVector Todo = SA->getThroughBlocks();
  for (unsigned c = 0; c != UsedCands.size(); ++c) {
    ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
      unsigned Number = Blocks[i];
      if (!Todo.test(Number))
        continue;
      Todo.reset(Number);

      unsigned IntvIn = 0, IntvOut = 0;
      SlotIndex IntfIn, IntfOut;

      unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
      if (CandIn != NoCand) {
        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
        IntvIn = Cand.IntvIdx;
        Cand.Intf.moveToBlock(Number);
        IntfIn = Cand.Intf.first();
      }

      unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
      if (CandOut != NoCand) {
        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
        IntvOut = Cand.IntvIdx;
        Cand.Intf.moveToBlock(Number);
        IntfOut = Cand.Intf.last();
      }
      if (!IntvIn && !IntvOut)
        continue;
      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
    }
  }

  ++NumGlobalSplits;

  SmallVector<unsigned, 8> IntvMap;
  SE->finish(&IntvMap);
  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);

  ExtraRegInfo.resize(MRI->getNumVirtRegs());
  unsigned OrigBlocks = SA->getNumLiveBlocks();

  // Sort out the new intervals created by splitting. We get four kinds:
  // - Remainder intervals should not be split again.
  // - Candidate intervals can be assigned to Cand.PhysReg.
  // - Block-local splits are candidates for local splitting.
  // - DCE leftovers should go back on the queue.
  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
    LiveInterval &Reg = LIS->getInterval(LREdit.get(i));

    // Ignore old intervals from DCE.
    if (getStage(Reg) != RS_New)
      continue;

    // Remainder interval. Don't try splitting again, spill if it doesn't
    // allocate.
    if (IntvMap[i] == 0) {
      setStage(Reg, RS_Spill);
      continue;
    }

    // Global intervals. Allow repeated splitting as long as the number of live
    // blocks is strictly decreasing.
    if (IntvMap[i] < NumGlobalIntvs) {
      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
        LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
                          << " blocks as original.\n");
        // Don't allow repeated splitting as a safe guard against looping.
        setStage(Reg, RS_Split2);
      }
      continue;
    }

    // Other intervals are treated as new. This includes local intervals created
    // for blocks with multiple uses, and anything created by DCE.
  }

  if (VerifyEnabled)
    MF->verify(this, "After splitting live range around region");
}

// Global split has high compile time cost especially for large live range.
// Return false for the case here where the potential benefit will never
// worth the cost.
unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval &VirtReg) {
  MachineInstr *MI = MRI->getUniqueVRegDef(VirtReg.reg);
  if (MI && TII->isTriviallyReMaterializable(*MI, AA) &&
      VirtReg.size() > HugeSizeForSplit)
    return false;
  return true;
}

unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
                                  SmallVectorImpl<unsigned> &NewVRegs) {
  if (!isSplitBenefitWorthCost(VirtReg))
    return 0;
  unsigned NumCands = 0;
  BlockFrequency SpillCost = calcSpillCost();
  BlockFrequency BestCost;

  // Check if we can split this live range around a compact region.
  bool HasCompact = calcCompactRegion(GlobalCand.front());
  if (HasCompact) {
    // Yes, keep GlobalCand[0] as the compact region candidate.
    NumCands = 1;
    BestCost = BlockFrequency::getMaxFrequency();
  } else {
    // No benefit from the compact region, our fallback will be per-block
    // splitting. Make sure we find a solution that is cheaper than spilling.
    BestCost = SpillCost;
    LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
               MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
  }

  bool CanCauseEvictionChain = false;
  unsigned BestCand =
      calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
                               false /*IgnoreCSR*/, &CanCauseEvictionChain);

  // Split candidates with compact regions can cause a bad eviction sequence.
  // See splitCanCauseEvictionChain for detailed description of scenarios.
  // To avoid it, we need to comapre the cost with the spill cost and not the
  // current max frequency.
  if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
    CanCauseEvictionChain) {
    return 0;
  }

  // No solutions found, fall back to single block splitting.
  if (!HasCompact && BestCand == NoCand)
    return 0;

  return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
}

unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
                                            AllocationOrder &Order,
                                            BlockFrequency &BestCost,
                                            unsigned &NumCands, bool IgnoreCSR,
                                            bool *CanCauseEvictionChain) {
  unsigned BestCand = NoCand;
  Order.rewind();
  while (unsigned PhysReg = Order.next()) {
    if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
      continue;

    // Discard bad candidates before we run out of interference cache cursors.
    // This will only affect register classes with a lot of registers (>32).
    if (NumCands == IntfCache.getMaxCursors()) {
      unsigned WorstCount = ~0u;
      unsigned Worst = 0;
      for (unsigned i = 0; i != NumCands; ++i) {
        if (i == BestCand || !GlobalCand[i].PhysReg)
          continue;
        unsigned Count = GlobalCand[i].LiveBundles.count();
        if (Count < WorstCount) {
          Worst = i;
          WorstCount = Count;
        }
      }
      --NumCands;
      GlobalCand[Worst] = GlobalCand[NumCands];
      if (BestCand == NumCands)
        BestCand = Worst;
    }

    if (GlobalCand.size() <= NumCands)
      GlobalCand.resize(NumCands+1);
    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
    Cand.reset(IntfCache, PhysReg);

    SpillPlacer->prepare(Cand.LiveBundles);
    BlockFrequency Cost;
    if (!addSplitConstraints(Cand.Intf, Cost)) {
      LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
      continue;
    }
    LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
               MBFI->printBlockFreq(dbgs(), Cost));
    if (Cost >= BestCost) {
      LLVM_DEBUG({
        if (BestCand == NoCand)
          dbgs() << " worse than no bundles\n";
        else
          dbgs() << " worse than "
                 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
      });
      continue;
    }
    if (!growRegion(Cand)) {
      LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
      continue;
    }

    SpillPlacer->finish();

    // No live bundles, defer to splitSingleBlocks().
    if (!Cand.LiveBundles.any()) {
      LLVM_DEBUG(dbgs() << " no bundles.\n");
      continue;
    }

    bool HasEvictionChain = false;
    Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
    LLVM_DEBUG({
      dbgs() << ", total = ";
      MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
      for (int i : Cand.LiveBundles.set_bits())
        dbgs() << " EB#" << i;
      dbgs() << ".\n";
    });
    if (Cost < BestCost) {
      BestCand = NumCands;
      BestCost = Cost;
      // See splitCanCauseEvictionChain for detailed description of bad
      // eviction chain scenarios.
      if (CanCauseEvictionChain)
        *CanCauseEvictionChain = HasEvictionChain;
    }
    ++NumCands;
  }

  if (CanCauseEvictionChain && BestCand != NoCand) {
    // See splitCanCauseEvictionChain for detailed description of bad
    // eviction chain scenarios.
    LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
                      << printReg(VirtReg.reg, TRI) << "  may ");
    if (!(*CanCauseEvictionChain))
      LLVM_DEBUG(dbgs() << "not ");
    LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
  }

  return BestCand;
}

unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
                                 bool HasCompact,
                                 SmallVectorImpl<unsigned> &NewVRegs) {
  SmallVector<unsigned, 8> UsedCands;
  // Prepare split editor.
  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
  SE->reset(LREdit, SplitSpillMode);

  // Assign all edge bundles to the preferred candidate, or NoCand.
  BundleCand.assign(Bundles->getNumBundles(), NoCand);

  // Assign bundles for the best candidate region.
  if (BestCand != NoCand) {
    GlobalSplitCandidate &Cand = GlobalCand[BestCand];
    if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
      UsedCands.push_back(BestCand);
      Cand.IntvIdx = SE->openIntv();
      LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
                        << B << " bundles, intv " << Cand.IntvIdx << ".\n");
      (void)B;
    }
  }

  // Assign bundles for the compact region.
  if (HasCompact) {
    GlobalSplitCandidate &Cand = GlobalCand.front();
    assert(!Cand.PhysReg && "Compact region has no physreg");
    if (unsigned B = Cand.getBundles(BundleCand, 0)) {
      UsedCands.push_back(0);
      Cand.IntvIdx = SE->openIntv();
      LLVM_DEBUG(dbgs() << "Split for compact region in " << B
                        << " bundles, intv " << Cand.IntvIdx << ".\n");
      (void)B;
    }
  }

  splitAroundRegion(LREdit, UsedCands);
  return 0;
}

//===----------------------------------------------------------------------===//
//                            Per-Block Splitting
//===----------------------------------------------------------------------===//

/// tryBlockSplit - Split a global live range around every block with uses. This
/// creates a lot of local live ranges, that will be split by tryLocalSplit if
/// they don't allocate.
unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
                                 SmallVectorImpl<unsigned> &NewVRegs) {
  assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
  unsigned Reg = VirtReg.reg;
  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
  SE->reset(LREdit, SplitSpillMode);
  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
      SE->splitSingleBlock(BI);
  }
  // No blocks were split.
  if (LREdit.empty())
    return 0;

  // We did split for some blocks.
  SmallVector<unsigned, 8> IntvMap;
  SE->finish(&IntvMap);

  // Tell LiveDebugVariables about the new ranges.
  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);

  ExtraRegInfo.resize(MRI->getNumVirtRegs());

  // Sort out the new intervals created by splitting. The remainder interval
  // goes straight to spilling, the new local ranges get to stay RS_New.
  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
    LiveInterval &LI = LIS->getInterval(LREdit.get(i));
    if (getStage(LI) == RS_New && IntvMap[i] == 0)
      setStage(LI, RS_Spill);
  }

  if (VerifyEnabled)
    MF->verify(this, "After splitting live range around basic blocks");
  return 0;
}

//===----------------------------------------------------------------------===//
//                         Per-Instruction Splitting
//===----------------------------------------------------------------------===//

/// Get the number of allocatable registers that match the constraints of \p Reg
/// on \p MI and that are also in \p SuperRC.
static unsigned getNumAllocatableRegsForConstraints(
    const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
    const RegisterClassInfo &RCI) {
  assert(SuperRC && "Invalid register class");

  const TargetRegisterClass *ConstrainedRC =
      MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
                                             /* ExploreBundle */ true);
  if (!ConstrainedRC)
    return 0;
  return RCI.getNumAllocatableRegs(ConstrainedRC);
}

/// tryInstructionSplit - Split a live range around individual instructions.
/// This is normally not worthwhile since the spiller is doing essentially the
/// same thing. However, when the live range is in a constrained register
/// class, it may help to insert copies such that parts of the live range can
/// be moved to a larger register class.
///
/// This is similar to spilling to a larger register class.
unsigned
RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
                              SmallVectorImpl<unsigned> &NewVRegs) {
  const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
  // There is no point to this if there are no larger sub-classes.
  if (!RegClassInfo.isProperSubClass(CurRC))
    return 0;

  // Always enable split spill mode, since we're effectively spilling to a
  // register.
  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
  SE->reset(LREdit, SplitEditor::SM_Size);

  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
  if (Uses.size() <= 1)
    return 0;

  LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
                    << " individual instrs.\n");

  const TargetRegisterClass *SuperRC =
      TRI->getLargestLegalSuperClass(CurRC, *MF);
  unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
  // Split around every non-copy instruction if this split will relax
  // the constraints on the virtual register.
  // Otherwise, splitting just inserts uncoalescable copies that do not help
  // the allocation.
  for (unsigned i = 0; i != Uses.size(); ++i) {
    if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
      if (MI->isFullCopy() ||
          SuperRCNumAllocatableRegs ==
              getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
                                                  TRI, RCI)) {
        LLVM_DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
        continue;
      }
    SE->openIntv();
    SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
    SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
    SE->useIntv(SegStart, SegStop);
  }

  if (LREdit.empty()) {
    LLVM_DEBUG(dbgs() << "All uses were copies.\n");
    return 0;
  }

  SmallVector<unsigned, 8> IntvMap;
  SE->finish(&IntvMap);
  DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
  ExtraRegInfo.resize(MRI->getNumVirtRegs());

  // Assign all new registers to RS_Spill. This was the last chance.
  setStage(LREdit.begin(), LREdit.end(), RS_Spill);
  return 0;
}

//===----------------------------------------------------------------------===//
//                             Local Splitting
//===----------------------------------------------------------------------===//

/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
/// in order to use PhysReg between two entries in SA->UseSlots.
///
/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
///
void RAGreedy::calcGapWeights(unsigned PhysReg,
                              SmallVectorImpl<float> &GapWeight) {
  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
  const unsigned NumGaps = Uses.size()-1;

  // Start and end points for the interference check.
  SlotIndex StartIdx =
    BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
  SlotIndex StopIdx =
    BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;

  GapWeight.assign(NumGaps, 0.0f);

  // Add interference from each overlapping register.
  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
    if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
          .checkInterference())
      continue;

    // We know that VirtReg is a continuous interval from FirstInstr to
    // LastInstr, so we don't need InterferenceQuery.
    //
    // Interference that overlaps an instruction is counted in both gaps
    // surrounding the instruction. The exception is interference before
    // StartIdx and after StopIdx.
    //
    LiveIntervalUnion::SegmentIter IntI =
      Matrix->getLiveUnions()[*Units] .find(StartIdx);
    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
      // Skip the gaps before IntI.
      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
        if (++Gap == NumGaps)
          break;
      if (Gap == NumGaps)
        break;

      // Update the gaps covered by IntI.
      const float weight = IntI.value()->weight;
      for (; Gap != NumGaps; ++Gap) {
        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
          break;
      }
      if (Gap == NumGaps)
        break;
    }
  }

  // Add fixed interference.
  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
    const LiveRange &LR = LIS->getRegUnit(*Units);
    LiveRange::const_iterator I = LR.find(StartIdx);
    LiveRange::const_iterator E = LR.end();

    // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
    for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
      while (Uses[Gap+1].getBoundaryIndex() < I->start)
        if (++Gap == NumGaps)
          break;
      if (Gap == NumGaps)
        break;

      for (; Gap != NumGaps; ++Gap) {
        GapWeight[Gap] = huge_valf;
        if (Uses[Gap+1].getBaseIndex() >= I->end)
          break;
      }
      if (Gap == NumGaps)
        break;
    }
  }
}

/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
/// basic block.
///
unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
                                 SmallVectorImpl<unsigned> &NewVRegs) {
  // TODO: the function currently only handles a single UseBlock; it should be
  // possible to generalize.
  if (SA->getUseBlocks().size() != 1)
    return 0;

  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();

  // Note that it is possible to have an interval that is live-in or live-out
  // while only covering a single block - A phi-def can use undef values from
  // predecessors, and the block could be a single-block loop.
  // We don't bother doing anything clever about such a case, we simply assume
  // that the interval is continuous from FirstInstr to LastInstr. We should
  // make sure that we don't do anything illegal to such an interval, though.

  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
  if (Uses.size() <= 2)
    return 0;
  const unsigned NumGaps = Uses.size()-1;

  LLVM_DEBUG({
    dbgs() << "tryLocalSplit: ";
    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
      dbgs() << ' ' << Uses[i];
    dbgs() << '\n';
  });

  // If VirtReg is live across any register mask operands, compute a list of
  // gaps with register masks.
  SmallVector<unsigned, 8> RegMaskGaps;
  if (Matrix->checkRegMaskInterference(VirtReg)) {
    // Get regmask slots for the whole block.
    ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
    LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
    // Constrain to VirtReg's live range.
    unsigned ri =
        llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
    unsigned re = RMS.size();
    for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
      // Look for Uses[i] <= RMS <= Uses[i+1].
      assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
      if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
        continue;
      // Skip a regmask on the same instruction as the last use. It doesn't
      // overlap the live range.
      if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
        break;
      LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-'
                        << Uses[i + 1]);
      RegMaskGaps.push_back(i);
      // Advance ri to the next gap. A regmask on one of the uses counts in
      // both gaps.
      while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
        ++ri;
    }
    LLVM_DEBUG(dbgs() << '\n');
  }

  // Since we allow local split results to be split again, there is a risk of
  // creating infinite loops. It is tempting to require that the new live
  // ranges have less instructions than the original. That would guarantee
  // convergence, but it is too strict. A live range with 3 instructions can be
  // split 2+3 (including the COPY), and we want to allow that.
  //
  // Instead we use these rules:
  //
  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
  //    noop split, of course).
  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
  //    the new ranges must have fewer instructions than before the split.
  // 3. New ranges with the same number of instructions are marked RS_Split2,
  //    smaller ranges are marked RS_New.
  //
  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
  // excessive splitting and infinite loops.
  //
  bool ProgressRequired = getStage(VirtReg) >= RS_Split2;

  // Best split candidate.
  unsigned BestBefore = NumGaps;
  unsigned BestAfter = 0;
  float BestDiff = 0;

  const float blockFreq =
    SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
    (1.0f / MBFI->getEntryFreq());
  SmallVector<float, 8> GapWeight;

  Order.rewind();
  while (unsigned PhysReg = Order.next()) {
    // Keep track of the largest spill weight that would need to be evicted in
    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
    calcGapWeights(PhysReg, GapWeight);

    // Remove any gaps with regmask clobbers.
    if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
      for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
        GapWeight[RegMaskGaps[i]] = huge_valf;

    // Try to find the best sequence of gaps to close.
    // The new spill weight must be larger than any gap interference.

    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
    unsigned SplitBefore = 0, SplitAfter = 1;

    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
    // It is the spill weight that needs to be evicted.
    float MaxGap = GapWeight[0];

    while (true) {
      // Live before/after split?
      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;

      LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
                        << '-' << Uses[SplitAfter] << " i=" << MaxGap);

      // Stop before the interval gets so big we wouldn't be making progress.
      if (!LiveBefore && !LiveAfter) {
        LLVM_DEBUG(dbgs() << " all\n");
        break;
      }
      // Should the interval be extended or shrunk?
      bool Shrink = true;

      // How many gaps would the new range have?
      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;

      // Legally, without causing looping?
      bool Legal = !ProgressRequired || NewGaps < NumGaps;

      if (Legal && MaxGap < huge_valf) {
        // Estimate the new spill weight. Each instruction reads or writes the
        // register. Conservatively assume there are no read-modify-write
        // instructions.
        //
        // Try to guess the size of the new interval.
        const float EstWeight = normalizeSpillWeight(
            blockFreq * (NewGaps + 1),
            Uses[SplitBefore].distance(Uses[SplitAfter]) +
                (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
            1);
        // Would this split be possible to allocate?
        // Never allocate all gaps, we wouldn't be making progress.
        LLVM_DEBUG(dbgs() << " w=" << EstWeight);
        if (EstWeight * Hysteresis >= MaxGap) {
          Shrink = false;
          float Diff = EstWeight - MaxGap;
          if (Diff > BestDiff) {
            LLVM_DEBUG(dbgs() << " (best)");
            BestDiff = Hysteresis * Diff;
            BestBefore = SplitBefore;
            BestAfter = SplitAfter;
          }
        }
      }

      // Try to shrink.
      if (Shrink) {
        if (++SplitBefore < SplitAfter) {
          LLVM_DEBUG(dbgs() << " shrink\n");
          // Recompute the max when necessary.
          if (GapWeight[SplitBefore - 1] >= MaxGap) {
            MaxGap = GapWeight[SplitBefore];
            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
              MaxGap = std::max(MaxGap, GapWeight[i]);
          }
          continue;
        }
        MaxGap = 0;
      }

      // Try to extend the interval.
      if (SplitAfter >= NumGaps) {
        LLVM_DEBUG(dbgs() << " end\n");
        break;
      }

      LLVM_DEBUG(dbgs() << " extend\n");
      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
    }
  }

  // Didn't find any candidates?
  if (BestBefore == NumGaps)
    return 0;

  LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
                    << Uses[BestAfter] << ", " << BestDiff << ", "
                    << (BestAfter - BestBefore + 1) << " instrs\n");

  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
  SE->reset(LREdit);

  SE->openIntv();
  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
  SE->useIntv(SegStart, SegStop);
  SmallVector<unsigned, 8> IntvMap;
  SE->finish(&IntvMap);
  DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);

  // If the new range has the same number of instructions as before, mark it as
  // RS_Split2 so the next split will be forced to make progress. Otherwise,
  // leave the new intervals as RS_New so they can compete.
  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
  if (NewGaps >= NumGaps) {
    LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
    assert(!ProgressRequired && "Didn't make progress when it was required.");
    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
      if (IntvMap[i] == 1) {
        setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
        LLVM_DEBUG(dbgs() << printReg(LREdit.get(i)));
      }
    LLVM_DEBUG(dbgs() << '\n');
  }
  ++NumLocalSplits;

  return 0;
}

//===----------------------------------------------------------------------===//
//                          Live Range Splitting
//===----------------------------------------------------------------------===//

/// trySplit - Try to split VirtReg or one of its interferences, making it
/// assignable.
/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
                            SmallVectorImpl<unsigned>&NewVRegs,
                            const SmallVirtRegSet &FixedRegisters) {
  // Ranges must be Split2 or less.
  if (getStage(VirtReg) >= RS_Spill)
    return 0;

  // Local intervals are handled separately.
  if (LIS->intervalIsInOneMBB(VirtReg)) {
    NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
                       TimerGroupDescription, TimePassesIsEnabled);
    SA->analyze(&VirtReg);
    unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
    if (PhysReg || !NewVRegs.empty())
      return PhysReg;
    return tryInstructionSplit(VirtReg, Order, NewVRegs);
  }

  NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
                     TimerGroupDescription, TimePassesIsEnabled);

  SA->analyze(&VirtReg);

  // FIXME: SplitAnalysis may repair broken live ranges coming from the
  // coalescer. That may cause the range to become allocatable which means that
  // tryRegionSplit won't be making progress. This check should be replaced with
  // an assertion when the coalescer is fixed.
  if (SA->didRepairRange()) {
    // VirtReg has changed, so all cached queries are invalid.
    Matrix->invalidateVirtRegs();
    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
      return PhysReg;
  }

  // First try to split around a region spanning multiple blocks. RS_Split2
  // ranges already made dubious progress with region splitting, so they go
  // straight to single block splitting.
  if (getStage(VirtReg) < RS_Split2) {
    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
    if (PhysReg || !NewVRegs.empty())
      return PhysReg;
  }

  // Then isolate blocks.
  return tryBlockSplit(VirtReg, Order, NewVRegs);
}

//===----------------------------------------------------------------------===//
//                          Last Chance Recoloring
//===----------------------------------------------------------------------===//

/// Return true if \p reg has any tied def operand.
static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
  for (const MachineOperand &MO : MRI->def_operands(reg))
    if (MO.isTied())
      return true;

  return false;
}

/// mayRecolorAllInterferences - Check if the virtual registers that
/// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
/// recolored to free \p PhysReg.
/// When true is returned, \p RecoloringCandidates has been augmented with all
/// the live intervals that need to be recolored in order to free \p PhysReg
/// for \p VirtReg.
/// \p FixedRegisters contains all the virtual registers that cannot be
/// recolored.
bool
RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
                                     SmallLISet &RecoloringCandidates,
                                     const SmallVirtRegSet &FixedRegisters) {
  const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);

  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
    // If there is LastChanceRecoloringMaxInterference or more interferences,
    // chances are one would not be recolorable.
    if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
        LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
      LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
      CutOffInfo |= CO_Interf;
      return false;
    }
    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
      // If Intf is done and sit on the same register class as VirtReg,
      // it would not be recolorable as it is in the same state as VirtReg.
      // However, if VirtReg has tied defs and Intf doesn't, then
      // there is still a point in examining if it can be recolorable.
      if (((getStage(*Intf) == RS_Done &&
            MRI->getRegClass(Intf->reg) == CurRC) &&
           !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) ||
          FixedRegisters.count(Intf->reg)) {
        LLVM_DEBUG(
            dbgs() << "Early abort: the interference is not recolorable.\n");
        return false;
      }
      RecoloringCandidates.insert(Intf);
    }
  }
  return true;
}

/// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
/// its interferences.
/// Last chance recoloring chooses a color for \p VirtReg and recolors every
/// virtual register that was using it. The recoloring process may recursively
/// use the last chance recoloring. Therefore, when a virtual register has been
/// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
/// be last-chance-recolored again during this recoloring "session".
/// E.g.,
/// Let
/// vA can use {R1, R2    }
/// vB can use {    R2, R3}
/// vC can use {R1        }
/// Where vA, vB, and vC cannot be split anymore (they are reloads for
/// instance) and they all interfere.
///
/// vA is assigned R1
/// vB is assigned R2
/// vC tries to evict vA but vA is already done.
/// Regular register allocation fails.
///
/// Last chance recoloring kicks in:
/// vC does as if vA was evicted => vC uses R1.
/// vC is marked as fixed.
/// vA needs to find a color.
/// None are available.
/// vA cannot evict vC: vC is a fixed virtual register now.
/// vA does as if vB was evicted => vA uses R2.
/// vB needs to find a color.
/// R3 is available.
/// Recoloring => vC = R1, vA = R2, vB = R3
///
/// \p Order defines the preferred allocation order for \p VirtReg.
/// \p NewRegs will contain any new virtual register that have been created
/// (split, spill) during the process and that must be assigned.
/// \p FixedRegisters contains all the virtual registers that cannot be
/// recolored.
/// \p Depth gives the current depth of the last chance recoloring.
/// \return a physical register that can be used for VirtReg or ~0u if none
/// exists.
unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
                                           AllocationOrder &Order,
                                           SmallVectorImpl<unsigned> &NewVRegs,
                                           SmallVirtRegSet &FixedRegisters,
                                           unsigned Depth) {
  LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
  // Ranges must be Done.
  assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
         "Last chance recoloring should really be last chance");
  // Set the max depth to LastChanceRecoloringMaxDepth.
  // We may want to reconsider that if we end up with a too large search space
  // for target with hundreds of registers.
  // Indeed, in that case we may want to cut the search space earlier.
  if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
    LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
    CutOffInfo |= CO_Depth;
    return ~0u;
  }

  // Set of Live intervals that will need to be recolored.
  SmallLISet RecoloringCandidates;
  // Record the original mapping virtual register to physical register in case
  // the recoloring fails.
  DenseMap<unsigned, unsigned> VirtRegToPhysReg;
  // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
  // this recoloring "session".
  assert(!FixedRegisters.count(VirtReg.reg));
  FixedRegisters.insert(VirtReg.reg);
  SmallVector<unsigned, 4> CurrentNewVRegs;

  Order.rewind();
  while (unsigned PhysReg = Order.next()) {
    LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
                      << printReg(PhysReg, TRI) << '\n');
    RecoloringCandidates.clear();
    VirtRegToPhysReg.clear();
    CurrentNewVRegs.clear();

    // It is only possible to recolor virtual register interference.
    if (Matrix->checkInterference(VirtReg, PhysReg) >
        LiveRegMatrix::IK_VirtReg) {
      LLVM_DEBUG(
          dbgs() << "Some interferences are not with virtual registers.\n");

      continue;
    }

    // Early give up on this PhysReg if it is obvious we cannot recolor all
    // the interferences.
    if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
                                    FixedRegisters)) {
      LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
      continue;
    }

    // RecoloringCandidates contains all the virtual registers that interfer
    // with VirtReg on PhysReg (or one of its aliases).
    // Enqueue them for recoloring and perform the actual recoloring.
    PQueue RecoloringQueue;
    for (SmallLISet::iterator It = RecoloringCandidates.begin(),
                              EndIt = RecoloringCandidates.end();
         It != EndIt; ++It) {
      unsigned ItVirtReg = (*It)->reg;
      enqueue(RecoloringQueue, *It);
      assert(VRM->hasPhys(ItVirtReg) &&
             "Interferences are supposed to be with allocated variables");

      // Record the current allocation.
      VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
      // unset the related struct.
      Matrix->unassign(**It);
    }

    // Do as if VirtReg was assigned to PhysReg so that the underlying
    // recoloring has the right information about the interferes and
    // available colors.
    Matrix->assign(VirtReg, PhysReg);

    // Save the current recoloring state.
    // If we cannot recolor all the interferences, we will have to start again
    // at this point for the next physical register.
    SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
    if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
                                FixedRegisters, Depth)) {
      // Push the queued vregs into the main queue.
      for (unsigned NewVReg : CurrentNewVRegs)
        NewVRegs.push_back(NewVReg);
      // Do not mess up with the global assignment process.
      // I.e., VirtReg must be unassigned.
      Matrix->unassign(VirtReg);
      return PhysReg;
    }

    LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
                      << printReg(PhysReg, TRI) << '\n');

    // The recoloring attempt failed, undo the changes.
    FixedRegisters = SaveFixedRegisters;
    Matrix->unassign(VirtReg);

    // For a newly created vreg which is also in RecoloringCandidates,
    // don't add it to NewVRegs because its physical register will be restored
    // below. Other vregs in CurrentNewVRegs are created by calling
    // selectOrSplit and should be added into NewVRegs.
    for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
                                             End = CurrentNewVRegs.end();
         Next != End; ++Next) {
      if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
        continue;
      NewVRegs.push_back(*Next);
    }

    for (SmallLISet::iterator It = RecoloringCandidates.begin(),
                              EndIt = RecoloringCandidates.end();
         It != EndIt; ++It) {
      unsigned ItVirtReg = (*It)->reg;
      if (VRM->hasPhys(ItVirtReg))
        Matrix->unassign(**It);
      unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
      Matrix->assign(**It, ItPhysReg);
    }
  }

  // Last chance recoloring did not worked either, give up.
  return ~0u;
}

/// tryRecoloringCandidates - Try to assign a new color to every register
/// in \RecoloringQueue.
/// \p NewRegs will contain any new virtual register created during the
/// recoloring process.
/// \p FixedRegisters[in/out] contains all the registers that have been
/// recolored.
/// \return true if all virtual registers in RecoloringQueue were successfully
/// recolored, false otherwise.
bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
                                       SmallVectorImpl<unsigned> &NewVRegs,
                                       SmallVirtRegSet &FixedRegisters,
                                       unsigned Depth) {
  while (!RecoloringQueue.empty()) {
    LiveInterval *LI = dequeue(RecoloringQueue);
    LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
    unsigned PhysReg;
    PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
    // When splitting happens, the live-range may actually be empty.
    // In that case, this is okay to continue the recoloring even
    // if we did not find an alternative color for it. Indeed,
    // there will not be anything to color for LI in the end.
    if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
      return false;

    if (!PhysReg) {
      assert(LI->empty() && "Only empty live-range do not require a register");
      LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
                        << " succeeded. Empty LI.\n");
      continue;
    }
    LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
                      << " succeeded with: " << printReg(PhysReg, TRI) << '\n');

    Matrix->assign(*LI, PhysReg);
    FixedRegisters.insert(LI->reg);
  }
  return true;
}

//===----------------------------------------------------------------------===//
//                            Main Entry Point
//===----------------------------------------------------------------------===//

unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
                                 SmallVectorImpl<unsigned> &NewVRegs) {
  CutOffInfo = CO_None;
  LLVMContext &Ctx = MF->getFunction().getContext();
  SmallVirtRegSet FixedRegisters;
  unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
  if (Reg == ~0U && (CutOffInfo != CO_None)) {
    uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
    if (CutOffEncountered == CO_Depth)
      Ctx.emitError("register allocation failed: maximum depth for recoloring "
                    "reached. Use -fexhaustive-register-search to skip "
                    "cutoffs");
    else if (CutOffEncountered == CO_Interf)
      Ctx.emitError("register allocation failed: maximum interference for "
                    "recoloring reached. Use -fexhaustive-register-search "
                    "to skip cutoffs");
    else if (CutOffEncountered == (CO_Depth | CO_Interf))
      Ctx.emitError("register allocation failed: maximum interference and "
                    "depth for recoloring reached. Use "
                    "-fexhaustive-register-search to skip cutoffs");
  }
  return Reg;
}

/// Using a CSR for the first time has a cost because it causes push|pop
/// to be added to prologue|epilogue. Splitting a cold section of the live
/// range can have lower cost than using the CSR for the first time;
/// Spilling a live range in the cold path can have lower cost than using
/// the CSR for the first time. Returns the physical register if we decide
/// to use the CSR; otherwise return 0.
unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
                                         AllocationOrder &Order,
                                         unsigned PhysReg,
                                         unsigned &CostPerUseLimit,
                                         SmallVectorImpl<unsigned> &NewVRegs) {
  if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
    // We choose spill over using the CSR for the first time if the spill cost
    // is lower than CSRCost.
    SA->analyze(&VirtReg);
    if (calcSpillCost() >= CSRCost)
      return PhysReg;

    // We are going to spill, set CostPerUseLimit to 1 to make sure that
    // we will not use a callee-saved register in tryEvict.
    CostPerUseLimit = 1;
    return 0;
  }
  if (getStage(VirtReg) < RS_Split) {
    // We choose pre-splitting over using the CSR for the first time if
    // the cost of splitting is lower than CSRCost.
    SA->analyze(&VirtReg);
    unsigned NumCands = 0;
    BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
    unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
                                                 NumCands, true /*IgnoreCSR*/);
    if (BestCand == NoCand)
      // Use the CSR if we can't find a region split below CSRCost.
      return PhysReg;

    // Perform the actual pre-splitting.
    doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
    return 0;
  }
  return PhysReg;
}

void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
  // Do not keep invalid information around.
  SetOfBrokenHints.remove(&LI);
}

void RAGreedy::initializeCSRCost() {
  // We use the larger one out of the command-line option and the value report
  // by TRI.
  CSRCost = BlockFrequency(
      std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
  if (!CSRCost.getFrequency())
    return;

  // Raw cost is relative to Entry == 2^14; scale it appropriately.
  uint64_t ActualEntry = MBFI->getEntryFreq();
  if (!ActualEntry) {
    CSRCost = 0;
    return;
  }
  uint64_t FixedEntry = 1 << 14;
  if (ActualEntry < FixedEntry)
    CSRCost *= BranchProbability(ActualEntry, FixedEntry);
  else if (ActualEntry <= UINT32_MAX)
    // Invert the fraction and divide.
    CSRCost /= BranchProbability(FixedEntry, ActualEntry);
  else
    // Can't use BranchProbability in general, since it takes 32-bit numbers.
    CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
}

/// Collect the hint info for \p Reg.
/// The results are stored into \p Out.
/// \p Out is not cleared before being populated.
void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
  for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
    if (!Instr.isFullCopy())
      continue;
    // Look for the other end of the copy.
    Register OtherReg = Instr.getOperand(0).getReg();
    if (OtherReg == Reg) {
      OtherReg = Instr.getOperand(1).getReg();
      if (OtherReg == Reg)
        continue;
    }
    // Get the current assignment.
    Register OtherPhysReg = Register::isPhysicalRegister(OtherReg)
                                ? OtherReg
                                : VRM->getPhys(OtherReg);
    // Push the collected information.
    Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
                           OtherPhysReg));
  }
}

/// Using the given \p List, compute the cost of the broken hints if
/// \p PhysReg was used.
/// \return The cost of \p List for \p PhysReg.
BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
                                           unsigned PhysReg) {
  BlockFrequency Cost = 0;
  for (const HintInfo &Info : List) {
    if (Info.PhysReg != PhysReg)
      Cost += Info.Freq;
  }
  return Cost;
}

/// Using the register assigned to \p VirtReg, try to recolor
/// all the live ranges that are copy-related with \p VirtReg.
/// The recoloring is then propagated to all the live-ranges that have
/// been recolored and so on, until no more copies can be coalesced or
/// it is not profitable.
/// For a given live range, profitability is determined by the sum of the
/// frequencies of the non-identity copies it would introduce with the old
/// and new register.
void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
  // We have a broken hint, check if it is possible to fix it by
  // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
  // some register and PhysReg may be available for the other live-ranges.
  SmallSet<unsigned, 4> Visited;
  SmallVector<unsigned, 2> RecoloringCandidates;
  HintsInfo Info;
  unsigned Reg = VirtReg.reg;
  Register PhysReg = VRM->getPhys(Reg);
  // Start the recoloring algorithm from the input live-interval, then
  // it will propagate to the ones that are copy-related with it.
  Visited.insert(Reg);
  RecoloringCandidates.push_back(Reg);

  LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
                    << '(' << printReg(PhysReg, TRI) << ")\n");

  do {
    Reg = RecoloringCandidates.pop_back_val();

    // We cannot recolor physical register.
    if (Register::isPhysicalRegister(Reg))
      continue;

    assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");

    // Get the live interval mapped with this virtual register to be able
    // to check for the interference with the new color.
    LiveInterval &LI = LIS->getInterval(Reg);
    Register CurrPhys = VRM->getPhys(Reg);
    // Check that the new color matches the register class constraints and
    // that it is free for this live range.
    if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
                                Matrix->checkInterference(LI, PhysReg)))
      continue;

    LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
                      << ") is recolorable.\n");

    // Gather the hint info.
    Info.clear();
    collectHintInfo(Reg, Info);
    // Check if recoloring the live-range will increase the cost of the
    // non-identity copies.
    if (CurrPhys != PhysReg) {
      LLVM_DEBUG(dbgs() << "Checking profitability:\n");
      BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
      BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
      LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
                        << "\nNew Cost: " << NewCopiesCost.getFrequency()
                        << '\n');
      if (OldCopiesCost < NewCopiesCost) {
        LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
        continue;
      }
      // At this point, the cost is either cheaper or equal. If it is
      // equal, we consider this is profitable because it may expose
      // more recoloring opportunities.
      LLVM_DEBUG(dbgs() << "=> Profitable.\n");
      // Recolor the live-range.
      Matrix->unassign(LI);
      Matrix->assign(LI, PhysReg);
    }
    // Push all copy-related live-ranges to keep reconciling the broken
    // hints.
    for (const HintInfo &HI : Info) {
      if (Visited.insert(HI.Reg).second)
        RecoloringCandidates.push_back(HI.Reg);
    }
  } while (!RecoloringCandidates.empty());
}

/// Try to recolor broken hints.
/// Broken hints may be repaired by recoloring when an evicted variable
/// freed up a register for a larger live-range.
/// Consider the following example:
/// BB1:
///   a =
///   b =
/// BB2:
///   ...
///   = b
///   = a
/// Let us assume b gets split:
/// BB1:
///   a =
///   b =
/// BB2:
///   c = b
///   ...
///   d = c
///   = d
///   = a
/// Because of how the allocation work, b, c, and d may be assigned different
/// colors. Now, if a gets evicted later:
/// BB1:
///   a =
///   st a, SpillSlot
///   b =
/// BB2:
///   c = b
///   ...
///   d = c
///   = d
///   e = ld SpillSlot
///   = e
/// This is likely that we can assign the same register for b, c, and d,
/// getting rid of 2 copies.
void RAGreedy::tryHintsRecoloring() {
  for (LiveInterval *LI : SetOfBrokenHints) {
    assert(Register::isVirtualRegister(LI->reg) &&
           "Recoloring is possible only for virtual registers");
    // Some dead defs may be around (e.g., because of debug uses).
    // Ignore those.
    if (!VRM->hasPhys(LI->reg))
      continue;
    tryHintRecoloring(*LI);
  }
}

unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
                                     SmallVectorImpl<unsigned> &NewVRegs,
                                     SmallVirtRegSet &FixedRegisters,
                                     unsigned Depth) {
  unsigned CostPerUseLimit = ~0u;
  // First try assigning a free register.
  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
    // If VirtReg got an assignment, the eviction info is no longre relevant.
    LastEvicted.clearEvicteeInfo(VirtReg.reg);
    // When NewVRegs is not empty, we may have made decisions such as evicting
    // a virtual register, go with the earlier decisions and use the physical
    // register.
    if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
        NewVRegs.empty()) {
      unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
                                              CostPerUseLimit, NewVRegs);
      if (CSRReg || !NewVRegs.empty())
        // Return now if we decide to use a CSR or create new vregs due to
        // pre-splitting.
        return CSRReg;
    } else
      return PhysReg;
  }

  LiveRangeStage Stage = getStage(VirtReg);
  LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
                    << ExtraRegInfo[VirtReg.reg].Cascade << '\n');

  // Try to evict a less worthy live range, but only for ranges from the primary
  // queue. The RS_Split ranges already failed to do this, and they should not
  // get a second chance until they have been split.
  if (Stage != RS_Split)
    if (unsigned PhysReg =
            tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
                     FixedRegisters)) {
      unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
      // If VirtReg has a hint and that hint is broken record this
      // virtual register as a recoloring candidate for broken hint.
      // Indeed, since we evicted a variable in its neighborhood it is
      // likely we can at least partially recolor some of the
      // copy-related live-ranges.
      if (Hint && Hint != PhysReg)
        SetOfBrokenHints.insert(&VirtReg);
      // If VirtReg eviction someone, the eviction info for it as an evictee is
      // no longre relevant.
      LastEvicted.clearEvicteeInfo(VirtReg.reg);
      return PhysReg;
    }

  assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");

  // The first time we see a live range, don't try to split or spill.
  // Wait until the second time, when all smaller ranges have been allocated.
  // This gives a better picture of the interference to split around.
  if (Stage < RS_Split) {
    setStage(VirtReg, RS_Split);
    LLVM_DEBUG(dbgs() << "wait for second round\n");
    NewVRegs.push_back(VirtReg.reg);
    return 0;
  }

  if (Stage < RS_Spill) {
    // Try splitting VirtReg or interferences.
    unsigned NewVRegSizeBefore = NewVRegs.size();
    unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
    if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
      // If VirtReg got split, the eviction info is no longre relevant.
      LastEvicted.clearEvicteeInfo(VirtReg.reg);
      return PhysReg;
    }
  }

  // If we couldn't allocate a register from spilling, there is probably some
  // invalid inline assembly. The base class will report it.
  if (Stage >= RS_Done || !VirtReg.isSpillable())
    return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
                                   Depth);

  // Finally spill VirtReg itself.
  if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
    // TODO: This is experimental and in particular, we do not model
    // the live range splitting done by spilling correctly.
    // We would need a deep integration with the spiller to do the
    // right thing here. Anyway, that is still good for early testing.
    setStage(VirtReg, RS_Memory);
    LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
    NewVRegs.push_back(VirtReg.reg);
  } else {
    NamedRegionTimer T("spill", "Spiller", TimerGroupName,
                       TimerGroupDescription, TimePassesIsEnabled);
    LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
    spiller().spill(LRE);
    setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);

    if (VerifyEnabled)
      MF->verify(this, "After spilling");
  }

  // The live virtual register requesting allocation was spilled, so tell
  // the caller not to allocate anything during this round.
  return 0;
}

void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
                                            unsigned &FoldedReloads,
                                            unsigned &Spills,
                                            unsigned &FoldedSpills) {
  Reloads = 0;
  FoldedReloads = 0;
  Spills = 0;
  FoldedSpills = 0;

  // Sum up the spill and reloads in subloops.
  for (MachineLoop *SubLoop : *L) {
    unsigned SubReloads;
    unsigned SubFoldedReloads;
    unsigned SubSpills;
    unsigned SubFoldedSpills;

    reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
                                 SubSpills, SubFoldedSpills);
    Reloads += SubReloads;
    FoldedReloads += SubFoldedReloads;
    Spills += SubSpills;
    FoldedSpills += SubFoldedSpills;
  }

  const MachineFrameInfo &MFI = MF->getFrameInfo();
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
  int FI;

  for (MachineBasicBlock *MBB : L->getBlocks())
    // Handle blocks that were not included in subloops.
    if (Loops->getLoopFor(MBB) == L)
      for (MachineInstr &MI : *MBB) {
        SmallVector<const MachineMemOperand *, 2> Accesses;
        auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
          return MFI.isSpillSlotObjectIndex(
              cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
                  ->getFrameIndex());
        };

        if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
          ++Reloads;
        else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
                 llvm::any_of(Accesses, isSpillSlotAccess))
          ++FoldedReloads;
        else if (TII->isStoreToStackSlot(MI, FI) &&
                 MFI.isSpillSlotObjectIndex(FI))
          ++Spills;
        else if (TII->hasStoreToStackSlot(MI, Accesses) &&
                 llvm::any_of(Accesses, isSpillSlotAccess))
          ++FoldedSpills;
      }

  if (Reloads || FoldedReloads || Spills || FoldedSpills) {
    using namespace ore;

    ORE->emit([&]() {
      MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
                                        L->getStartLoc(), L->getHeader());
      if (Spills)
        R << NV("NumSpills", Spills) << " spills ";
      if (FoldedSpills)
        R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
      if (Reloads)
        R << NV("NumReloads", Reloads) << " reloads ";
      if (FoldedReloads)
        R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
      R << "generated in loop";
      return R;
    });
  }
}

bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
  LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
                    << "********** Function: " << mf.getName() << '\n');

  MF = &mf;
  TRI = MF->getSubtarget().getRegisterInfo();
  TII = MF->getSubtarget().getInstrInfo();
  RCI.runOnMachineFunction(mf);

  EnableLocalReassign = EnableLocalReassignment ||
                        MF->getSubtarget().enableRALocalReassignment(
                            MF->getTarget().getOptLevel());

  EnableAdvancedRASplitCost = ConsiderLocalIntervalCost ||
                              MF->getSubtarget().enableAdvancedRASplitCost();

  if (VerifyEnabled)
    MF->verify(this, "Before greedy register allocator");

  RegAllocBase::init(getAnalysis<VirtRegMap>(),
                     getAnalysis<LiveIntervals>(),
                     getAnalysis<LiveRegMatrix>());
  Indexes = &getAnalysis<SlotIndexes>();
  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
  DomTree = &getAnalysis<MachineDominatorTree>();
  ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
  Loops = &getAnalysis<MachineLoopInfo>();
  Bundles = &getAnalysis<EdgeBundles>();
  SpillPlacer = &getAnalysis<SpillPlacement>();
  DebugVars = &getAnalysis<LiveDebugVariables>();
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();

  initializeCSRCost();

  calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);

  LLVM_DEBUG(LIS->dump());

  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
  SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
  ExtraRegInfo.clear();
  ExtraRegInfo.resize(MRI->getNumVirtRegs());
  NextCascade = 1;
  IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
  GlobalCand.resize(32);  // This will grow as needed.
  SetOfBrokenHints.clear();
  LastEvicted.clear();

  allocatePhysRegs();
  tryHintsRecoloring();
  postOptimization();
  reportNumberOfSplillsReloads();

  releaseMemory();
  return true;
}