reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
//===- ExecutionDomainFix.cpp - Fix execution domain issues ----*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/ExecutionDomainFix.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "execution-deps-fix"

iterator_range<SmallVectorImpl<int>::const_iterator>
ExecutionDomainFix::regIndices(unsigned Reg) const {
  assert(Reg < AliasMap.size() && "Invalid register");
  const auto &Entry = AliasMap[Reg];
  return make_range(Entry.begin(), Entry.end());
}

DomainValue *ExecutionDomainFix::alloc(int domain) {
  DomainValue *dv = Avail.empty() ? new (Allocator.Allocate()) DomainValue
                                  : Avail.pop_back_val();
  if (domain >= 0)
    dv->addDomain(domain);
  assert(dv->Refs == 0 && "Reference count wasn't cleared");
  assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
  return dv;
}

void ExecutionDomainFix::release(DomainValue *DV) {
  while (DV) {
    assert(DV->Refs && "Bad DomainValue");
    if (--DV->Refs)
      return;

    // There are no more DV references. Collapse any contained instructions.
    if (DV->AvailableDomains && !DV->isCollapsed())
      collapse(DV, DV->getFirstDomain());

    DomainValue *Next = DV->Next;
    DV->clear();
    Avail.push_back(DV);
    // Also release the next DomainValue in the chain.
    DV = Next;
  }
}

DomainValue *ExecutionDomainFix::resolve(DomainValue *&DVRef) {
  DomainValue *DV = DVRef;
  if (!DV || !DV->Next)
    return DV;

  // DV has a chain. Find the end.
  do
    DV = DV->Next;
  while (DV->Next);

  // Update DVRef to point to DV.
  retain(DV);
  release(DVRef);
  DVRef = DV;
  return DV;
}

void ExecutionDomainFix::setLiveReg(int rx, DomainValue *dv) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(!LiveRegs.empty() && "Must enter basic block first.");

  if (LiveRegs[rx] == dv)
    return;
  if (LiveRegs[rx])
    release(LiveRegs[rx]);
  LiveRegs[rx] = retain(dv);
}

void ExecutionDomainFix::kill(int rx) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(!LiveRegs.empty() && "Must enter basic block first.");
  if (!LiveRegs[rx])
    return;

  release(LiveRegs[rx]);
  LiveRegs[rx] = nullptr;
}

void ExecutionDomainFix::force(int rx, unsigned domain) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(!LiveRegs.empty() && "Must enter basic block first.");
  if (DomainValue *dv = LiveRegs[rx]) {
    if (dv->isCollapsed())
      dv->addDomain(domain);
    else if (dv->hasDomain(domain))
      collapse(dv, domain);
    else {
      // This is an incompatible open DomainValue. Collapse it to whatever and
      // force the new value into domain. This costs a domain crossing.
      collapse(dv, dv->getFirstDomain());
      assert(LiveRegs[rx] && "Not live after collapse?");
      LiveRegs[rx]->addDomain(domain);
    }
  } else {
    // Set up basic collapsed DomainValue.
    setLiveReg(rx, alloc(domain));
  }
}

void ExecutionDomainFix::collapse(DomainValue *dv, unsigned domain) {
  assert(dv->hasDomain(domain) && "Cannot collapse");

  // Collapse all the instructions.
  while (!dv->Instrs.empty())
    TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain);
  dv->setSingleDomain(domain);

  // If there are multiple users, give them new, unique DomainValues.
  if (!LiveRegs.empty() && dv->Refs > 1)
    for (unsigned rx = 0; rx != NumRegs; ++rx)
      if (LiveRegs[rx] == dv)
        setLiveReg(rx, alloc(domain));
}

bool ExecutionDomainFix::merge(DomainValue *A, DomainValue *B) {
  assert(!A->isCollapsed() && "Cannot merge into collapsed");
  assert(!B->isCollapsed() && "Cannot merge from collapsed");
  if (A == B)
    return true;
  // Restrict to the domains that A and B have in common.
  unsigned common = A->getCommonDomains(B->AvailableDomains);
  if (!common)
    return false;
  A->AvailableDomains = common;
  A->Instrs.append(B->Instrs.begin(), B->Instrs.end());

  // Clear the old DomainValue so we won't try to swizzle instructions twice.
  B->clear();
  // All uses of B are referred to A.
  B->Next = retain(A);

  for (unsigned rx = 0; rx != NumRegs; ++rx) {
    assert(!LiveRegs.empty() && "no space allocated for live registers");
    if (LiveRegs[rx] == B)
      setLiveReg(rx, A);
  }
  return true;
}

void ExecutionDomainFix::enterBasicBlock(
    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {

  MachineBasicBlock *MBB = TraversedMBB.MBB;

  // Set up LiveRegs to represent registers entering MBB.
  // Set default domain values to 'no domain' (nullptr)
  if (LiveRegs.empty())
    LiveRegs.assign(NumRegs, nullptr);

  // This is the entry block.
  if (MBB->pred_empty()) {
    LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
    return;
  }

  // Try to coalesce live-out registers from predecessors.
  for (MachineBasicBlock *pred : MBB->predecessors()) {
    assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() &&
           "Should have pre-allocated MBBInfos for all MBBs");
    LiveRegsDVInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
    // Incoming is null if this is a backedge from a BB
    // we haven't processed yet
    if (Incoming.empty())
      continue;

    for (unsigned rx = 0; rx != NumRegs; ++rx) {
      DomainValue *pdv = resolve(Incoming[rx]);
      if (!pdv)
        continue;
      if (!LiveRegs[rx]) {
        setLiveReg(rx, pdv);
        continue;
      }

      // We have a live DomainValue from more than one predecessor.
      if (LiveRegs[rx]->isCollapsed()) {
        // We are already collapsed, but predecessor is not. Force it.
        unsigned Domain = LiveRegs[rx]->getFirstDomain();
        if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
          collapse(pdv, Domain);
        continue;
      }

      // Currently open, merge in predecessor.
      if (!pdv->isCollapsed())
        merge(LiveRegs[rx], pdv);
      else
        force(rx, pdv->getFirstDomain());
    }
  }
  LLVM_DEBUG(dbgs() << printMBBReference(*MBB)
                    << (!TraversedMBB.IsDone ? ": incomplete\n"
                                             : ": all preds known\n"));
}

void ExecutionDomainFix::leaveBasicBlock(
    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
  assert(!LiveRegs.empty() && "Must enter basic block first.");
  unsigned MBBNumber = TraversedMBB.MBB->getNumber();
  assert(MBBNumber < MBBOutRegsInfos.size() &&
         "Unexpected basic block number.");
  // Save register clearances at end of MBB - used by enterBasicBlock().
  for (DomainValue *OldLiveReg : MBBOutRegsInfos[MBBNumber]) {
    release(OldLiveReg);
  }
  MBBOutRegsInfos[MBBNumber] = LiveRegs;
  LiveRegs.clear();
}

bool ExecutionDomainFix::visitInstr(MachineInstr *MI) {
  // Update instructions with explicit execution domains.
  std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(*MI);
  if (DomP.first) {
    if (DomP.second)
      visitSoftInstr(MI, DomP.second);
    else
      visitHardInstr(MI, DomP.first);
  }

  return !DomP.first;
}

void ExecutionDomainFix::processDefs(MachineInstr *MI, bool Kill) {
  assert(!MI->isDebugInstr() && "Won't process debug values");
  const MCInstrDesc &MCID = MI->getDesc();
  for (unsigned i = 0,
                e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
       i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg())
      continue;
    if (MO.isUse())
      continue;
    for (int rx : regIndices(MO.getReg())) {
      // This instruction explicitly defines rx.
      LLVM_DEBUG(dbgs() << printReg(RC->getRegister(rx), TRI) << ":\t" << *MI);

      // Kill off domains redefined by generic instructions.
      if (Kill)
        kill(rx);
    }
  }
}

void ExecutionDomainFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
  // Collapse all uses.
  for (unsigned i = mi->getDesc().getNumDefs(),
                e = mi->getDesc().getNumOperands();
       i != e; ++i) {
    MachineOperand &mo = mi->getOperand(i);
    if (!mo.isReg())
      continue;
    for (int rx : regIndices(mo.getReg())) {
      force(rx, domain);
    }
  }

  // Kill all defs and force them.
  for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
    MachineOperand &mo = mi->getOperand(i);
    if (!mo.isReg())
      continue;
    for (int rx : regIndices(mo.getReg())) {
      kill(rx);
      force(rx, domain);
    }
  }
}

void ExecutionDomainFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
  // Bitmask of available domains for this instruction after taking collapsed
  // operands into account.
  unsigned available = mask;

  // Scan the explicit use operands for incoming domains.
  SmallVector<int, 4> used;
  if (!LiveRegs.empty())
    for (unsigned i = mi->getDesc().getNumDefs(),
                  e = mi->getDesc().getNumOperands();
         i != e; ++i) {
      MachineOperand &mo = mi->getOperand(i);
      if (!mo.isReg())
        continue;
      for (int rx : regIndices(mo.getReg())) {
        DomainValue *dv = LiveRegs[rx];
        if (dv == nullptr)
          continue;
        // Bitmask of domains that dv and available have in common.
        unsigned common = dv->getCommonDomains(available);
        // Is it possible to use this collapsed register for free?
        if (dv->isCollapsed()) {
          // Restrict available domains to the ones in common with the operand.
          // If there are no common domains, we must pay the cross-domain
          // penalty for this operand.
          if (common)
            available = common;
        } else if (common)
          // Open DomainValue is compatible, save it for merging.
          used.push_back(rx);
        else
          // Open DomainValue is not compatible with instruction. It is useless
          // now.
          kill(rx);
      }
    }

  // If the collapsed operands force a single domain, propagate the collapse.
  if (isPowerOf2_32(available)) {
    unsigned domain = countTrailingZeros(available);
    TII->setExecutionDomain(*mi, domain);
    visitHardInstr(mi, domain);
    return;
  }

  // Kill off any remaining uses that don't match available, and build a list of
  // incoming DomainValues that we want to merge.
  SmallVector<int, 4> Regs;
  for (int rx : used) {
    assert(!LiveRegs.empty() && "no space allocated for live registers");
    DomainValue *&LR = LiveRegs[rx];
    // This useless DomainValue could have been missed above.
    if (!LR->getCommonDomains(available)) {
      kill(rx);
      continue;
    }
    // Sorted insertion.
    // Enables giving priority to the latest domains during merging.
    const int Def = RDA->getReachingDef(mi, RC->getRegister(rx));
    auto I = partition_point(Regs, [&](int I) {
      return RDA->getReachingDef(mi, RC->getRegister(I)) <= Def;
    });
    Regs.insert(I, rx);
  }

  // doms are now sorted in order of appearance. Try to merge them all, giving
  // priority to the latest ones.
  DomainValue *dv = nullptr;
  while (!Regs.empty()) {
    if (!dv) {
      dv = LiveRegs[Regs.pop_back_val()];
      // Force the first dv to match the current instruction.
      dv->AvailableDomains = dv->getCommonDomains(available);
      assert(dv->AvailableDomains && "Domain should have been filtered");
      continue;
    }

    DomainValue *Latest = LiveRegs[Regs.pop_back_val()];
    // Skip already merged values.
    if (Latest == dv || Latest->Next)
      continue;
    if (merge(dv, Latest))
      continue;

    // If latest didn't merge, it is useless now. Kill all registers using it.
    for (int i : used) {
      assert(!LiveRegs.empty() && "no space allocated for live registers");
      if (LiveRegs[i] == Latest)
        kill(i);
    }
  }

  // dv is the DomainValue we are going to use for this instruction.
  if (!dv) {
    dv = alloc();
    dv->AvailableDomains = available;
  }
  dv->Instrs.push_back(mi);

  // Finally set all defs and non-collapsed uses to dv. We must iterate through
  // all the operators, including imp-def ones.
  for (MachineOperand &mo : mi->operands()) {
    if (!mo.isReg())
      continue;
    for (int rx : regIndices(mo.getReg())) {
      if (!LiveRegs[rx] || (mo.isDef() && LiveRegs[rx] != dv)) {
        kill(rx);
        setLiveReg(rx, dv);
      }
    }
  }
}

void ExecutionDomainFix::processBasicBlock(
    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
  enterBasicBlock(TraversedMBB);
  // If this block is not done, it makes little sense to make any decisions
  // based on clearance information. We need to make a second pass anyway,
  // and by then we'll have better information, so we can avoid doing the work
  // to try and break dependencies now.
  for (MachineInstr &MI : *TraversedMBB.MBB) {
    if (!MI.isDebugInstr()) {
      bool Kill = false;
      if (TraversedMBB.PrimaryPass)
        Kill = visitInstr(&MI);
      processDefs(&MI, Kill);
    }
  }
  leaveBasicBlock(TraversedMBB);
}

bool ExecutionDomainFix::runOnMachineFunction(MachineFunction &mf) {
  if (skipFunction(mf.getFunction()))
    return false;
  MF = &mf;
  TII = MF->getSubtarget().getInstrInfo();
  TRI = MF->getSubtarget().getRegisterInfo();
  LiveRegs.clear();
  assert(NumRegs == RC->getNumRegs() && "Bad regclass");

  LLVM_DEBUG(dbgs() << "********** FIX EXECUTION DOMAIN: "
                    << TRI->getRegClassName(RC) << " **********\n");

  // If no relevant registers are used in the function, we can skip it
  // completely.
  bool anyregs = false;
  const MachineRegisterInfo &MRI = mf.getRegInfo();
  for (unsigned Reg : *RC) {
    if (MRI.isPhysRegUsed(Reg)) {
      anyregs = true;
      break;
    }
  }
  if (!anyregs)
    return false;

  RDA = &getAnalysis<ReachingDefAnalysis>();

  // Initialize the AliasMap on the first use.
  if (AliasMap.empty()) {
    // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
    // therefore the LiveRegs array.
    AliasMap.resize(TRI->getNumRegs());
    for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
      for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true); AI.isValid();
           ++AI)
        AliasMap[*AI].push_back(i);
  }

  // Initialize the MBBOutRegsInfos
  MBBOutRegsInfos.resize(mf.getNumBlockIDs());

  // Traverse the basic blocks.
  LoopTraversal Traversal;
  LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf);
  for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) {
    processBasicBlock(TraversedMBB);
  }

  for (LiveRegsDVInfo OutLiveRegs : MBBOutRegsInfos) {
    for (DomainValue *OutLiveReg : OutLiveRegs) {
      if (OutLiveReg)
        release(OutLiveReg);
    }
  }
  MBBOutRegsInfos.clear();
  Avail.clear();
  Allocator.DestroyAll();

  return false;
}