reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
//===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass forwards branches to unconditional branches to make them branch
// directly to the target block.  This pass often results in dead MBB's, which
// it then removes.
//
// Note that this pass must be run after register allocation, it cannot handle
// SSA form. It also must handle virtual registers for targets that emit virtual
// ISA (e.g. NVPTX).
//
//===----------------------------------------------------------------------===//

#include "BranchFolding.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <cstddef>
#include <iterator>
#include <numeric>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "branch-folder"

STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
STATISTIC(NumBranchOpts, "Number of branches optimized");
STATISTIC(NumTailMerge , "Number of block tails merged");
STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
STATISTIC(NumTailCalls,  "Number of tail calls optimized");

static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
                              cl::init(cl::BOU_UNSET), cl::Hidden);

// Throttle for huge numbers of predecessors (compile speed problems)
static cl::opt<unsigned>
TailMergeThreshold("tail-merge-threshold",
          cl::desc("Max number of predecessors to consider tail merging"),
          cl::init(150), cl::Hidden);

// Heuristic for tail merging (and, inversely, tail duplication).
// TODO: This should be replaced with a target query.
static cl::opt<unsigned>
TailMergeSize("tail-merge-size",
              cl::desc("Min number of instructions to consider tail merging"),
              cl::init(3), cl::Hidden);

namespace {

  /// BranchFolderPass - Wrap branch folder in a machine function pass.
  class BranchFolderPass : public MachineFunctionPass {
  public:
    static char ID;

    explicit BranchFolderPass(): MachineFunctionPass(ID) {}

    bool runOnMachineFunction(MachineFunction &MF) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineBlockFrequencyInfo>();
      AU.addRequired<MachineBranchProbabilityInfo>();
      AU.addRequired<TargetPassConfig>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
  };

} // end anonymous namespace

char BranchFolderPass::ID = 0;

char &llvm::BranchFolderPassID = BranchFolderPass::ID;

INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
                "Control Flow Optimizer", false, false)

bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
  // TailMerge can create jump into if branches that make CFG irreducible for
  // HW that requires structurized CFG.
  bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
                         PassConfig->getEnableTailMerge();
  BranchFolder::MBFIWrapper MBBFreqInfo(
      getAnalysis<MachineBlockFrequencyInfo>());
  BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
                      getAnalysis<MachineBranchProbabilityInfo>());
  auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
  return Folder.OptimizeFunction(
      MF, MF.getSubtarget().getInstrInfo(), MF.getSubtarget().getRegisterInfo(),
      MMIWP ? &MMIWP->getMMI() : nullptr);
}

BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
                           MBFIWrapper &FreqInfo,
                           const MachineBranchProbabilityInfo &ProbInfo,
                           unsigned MinTailLength)
    : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
      MBBFreqInfo(FreqInfo), MBPI(ProbInfo) {
  if (MinCommonTailLength == 0)
    MinCommonTailLength = TailMergeSize;
  switch (FlagEnableTailMerge) {
  case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
  case cl::BOU_TRUE: EnableTailMerge = true; break;
  case cl::BOU_FALSE: EnableTailMerge = false; break;
  }
}

void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
  assert(MBB->pred_empty() && "MBB must be dead!");
  LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);

  MachineFunction *MF = MBB->getParent();
  // drop all successors.
  while (!MBB->succ_empty())
    MBB->removeSuccessor(MBB->succ_end()-1);

  // Avoid matching if this pointer gets reused.
  TriedMerging.erase(MBB);

  // Update call site info.
  std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) {
    if (MI.isCall(MachineInstr::IgnoreBundle))
      MF->eraseCallSiteInfo(&MI);
  });
  // Remove the block.
  MF->erase(MBB);
  EHScopeMembership.erase(MBB);
  if (MLI)
    MLI->removeBlock(MBB);
}

bool BranchFolder::OptimizeFunction(MachineFunction &MF,
                                    const TargetInstrInfo *tii,
                                    const TargetRegisterInfo *tri,
                                    MachineModuleInfo *mmi,
                                    MachineLoopInfo *mli, bool AfterPlacement) {
  if (!tii) return false;

  TriedMerging.clear();

  MachineRegisterInfo &MRI = MF.getRegInfo();
  AfterBlockPlacement = AfterPlacement;
  TII = tii;
  TRI = tri;
  MMI = mmi;
  MLI = mli;
  this->MRI = &MRI;

  UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
  if (!UpdateLiveIns)
    MRI.invalidateLiveness();

  // Fix CFG.  The later algorithms expect it to be right.
  bool MadeChange = false;
  for (MachineBasicBlock &MBB : MF) {
    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
    SmallVector<MachineOperand, 4> Cond;
    if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true))
      MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
  }

  // Recalculate EH scope membership.
  EHScopeMembership = getEHScopeMembership(MF);

  bool MadeChangeThisIteration = true;
  while (MadeChangeThisIteration) {
    MadeChangeThisIteration    = TailMergeBlocks(MF);
    // No need to clean up if tail merging does not change anything after the
    // block placement.
    if (!AfterBlockPlacement || MadeChangeThisIteration)
      MadeChangeThisIteration |= OptimizeBranches(MF);
    if (EnableHoistCommonCode)
      MadeChangeThisIteration |= HoistCommonCode(MF);
    MadeChange |= MadeChangeThisIteration;
  }

  // See if any jump tables have become dead as the code generator
  // did its thing.
  MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
  if (!JTI)
    return MadeChange;

  // Walk the function to find jump tables that are live.
  BitVector JTIsLive(JTI->getJumpTables().size());
  for (const MachineBasicBlock &BB : MF) {
    for (const MachineInstr &I : BB)
      for (const MachineOperand &Op : I.operands()) {
        if (!Op.isJTI()) continue;

        // Remember that this JT is live.
        JTIsLive.set(Op.getIndex());
      }
  }

  // Finally, remove dead jump tables.  This happens when the
  // indirect jump was unreachable (and thus deleted).
  for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
    if (!JTIsLive.test(i)) {
      JTI->RemoveJumpTable(i);
      MadeChange = true;
    }

  return MadeChange;
}

//===----------------------------------------------------------------------===//
//  Tail Merging of Blocks
//===----------------------------------------------------------------------===//

/// HashMachineInstr - Compute a hash value for MI and its operands.
static unsigned HashMachineInstr(const MachineInstr &MI) {
  unsigned Hash = MI.getOpcode();
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &Op = MI.getOperand(i);

    // Merge in bits from the operand if easy. We can't use MachineOperand's
    // hash_code here because it's not deterministic and we sort by hash value
    // later.
    unsigned OperandHash = 0;
    switch (Op.getType()) {
    case MachineOperand::MO_Register:
      OperandHash = Op.getReg();
      break;
    case MachineOperand::MO_Immediate:
      OperandHash = Op.getImm();
      break;
    case MachineOperand::MO_MachineBasicBlock:
      OperandHash = Op.getMBB()->getNumber();
      break;
    case MachineOperand::MO_FrameIndex:
    case MachineOperand::MO_ConstantPoolIndex:
    case MachineOperand::MO_JumpTableIndex:
      OperandHash = Op.getIndex();
      break;
    case MachineOperand::MO_GlobalAddress:
    case MachineOperand::MO_ExternalSymbol:
      // Global address / external symbol are too hard, don't bother, but do
      // pull in the offset.
      OperandHash = Op.getOffset();
      break;
    default:
      break;
    }

    Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
  }
  return Hash;
}

/// HashEndOfMBB - Hash the last instruction in the MBB.
static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
  MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return 0;

  return HashMachineInstr(*I);
}

///  Whether MI should be counted as an instruction when calculating common tail.
static bool countsAsInstruction(const MachineInstr &MI) {
  return !(MI.isDebugInstr() || MI.isCFIInstruction());
}

/// ComputeCommonTailLength - Given two machine basic blocks, compute the number
/// of instructions they actually have in common together at their end.  Return
/// iterators for the first shared instruction in each block.
static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
                                        MachineBasicBlock *MBB2,
                                        MachineBasicBlock::iterator &I1,
                                        MachineBasicBlock::iterator &I2) {
  I1 = MBB1->end();
  I2 = MBB2->end();

  unsigned TailLen = 0;
  while (I1 != MBB1->begin() && I2 != MBB2->begin()) {
    --I1; --I2;
    // Skip debugging pseudos; necessary to avoid changing the code.
    while (!countsAsInstruction(*I1)) {
      if (I1==MBB1->begin()) {
        while (!countsAsInstruction(*I2)) {
          if (I2==MBB2->begin()) {
            // I1==DBG at begin; I2==DBG at begin
            goto SkipTopCFIAndReturn;
          }
          --I2;
        }
        ++I2;
        // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin
        goto SkipTopCFIAndReturn;
      }
      --I1;
    }
    // I1==first (untested) non-DBG preceding known match
    while (!countsAsInstruction(*I2)) {
      if (I2==MBB2->begin()) {
        ++I1;
        // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin
        goto SkipTopCFIAndReturn;
      }
      --I2;
    }
    // I1, I2==first (untested) non-DBGs preceding known match
    if (!I1->isIdenticalTo(*I2) ||
        // FIXME: This check is dubious. It's used to get around a problem where
        // people incorrectly expect inline asm directives to remain in the same
        // relative order. This is untenable because normal compiler
        // optimizations (like this one) may reorder and/or merge these
        // directives.
        I1->isInlineAsm()) {
      ++I1; ++I2;
      break;
    }
    ++TailLen;
  }
  // Back past possible debugging pseudos at beginning of block.  This matters
  // when one block differs from the other only by whether debugging pseudos
  // are present at the beginning. (This way, the various checks later for
  // I1==MBB1->begin() work as expected.)
  if (I1 == MBB1->begin() && I2 != MBB2->begin()) {
    --I2;
    while (I2->isDebugInstr()) {
      if (I2 == MBB2->begin())
        return TailLen;
      --I2;
    }
    ++I2;
  }
  if (I2 == MBB2->begin() && I1 != MBB1->begin()) {
    --I1;
    while (I1->isDebugInstr()) {
      if (I1 == MBB1->begin())
        return TailLen;
      --I1;
    }
    ++I1;
  }

SkipTopCFIAndReturn:
  // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if
  // I1 and I2 are non-identical when compared and then one or both of them ends
  // up pointing to a CFI instruction after being incremented. For example:
  /*
    BB1:
    ...
    INSTRUCTION_A
    ADD32ri8  <- last common instruction
    ...
    BB2:
    ...
    INSTRUCTION_B
    CFI_INSTRUCTION
    ADD32ri8  <- last common instruction
    ...
  */
  // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after
  // incrementing the iterators, I1 will point to ADD, however I2 will point to
  // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the
  // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI
  // instruction.
  while (I1 != MBB1->end() && I1->isCFIInstruction()) {
    ++I1;
  }

  while (I2 != MBB2->end() && I2->isCFIInstruction()) {
    ++I2;
  }

  return TailLen;
}

void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
                                           MachineBasicBlock &NewDest) {
  if (UpdateLiveIns) {
    // OldInst should always point to an instruction.
    MachineBasicBlock &OldMBB = *OldInst->getParent();
    LiveRegs.clear();
    LiveRegs.addLiveOuts(OldMBB);
    // Move backward to the place where will insert the jump.
    MachineBasicBlock::iterator I = OldMBB.end();
    do {
      --I;
      LiveRegs.stepBackward(*I);
    } while (I != OldInst);

    // Merging the tails may have switched some undef operand to non-undef ones.
    // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
    // register.
    for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
      // We computed the liveins with computeLiveIn earlier and should only see
      // full registers:
      assert(P.LaneMask == LaneBitmask::getAll() &&
             "Can only handle full register.");
      MCPhysReg Reg = P.PhysReg;
      if (!LiveRegs.available(*MRI, Reg))
        continue;
      DebugLoc DL;
      BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
    }
  }

  TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
  ++NumTailMerge;
}

MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
                                            MachineBasicBlock::iterator BBI1,
                                            const BasicBlock *BB) {
  if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
    return nullptr;

  MachineFunction &MF = *CurMBB.getParent();

  // Create the fall-through block.
  MachineFunction::iterator MBBI = CurMBB.getIterator();
  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
  CurMBB.getParent()->insert(++MBBI, NewMBB);

  // Move all the successors of this block to the specified block.
  NewMBB->transferSuccessors(&CurMBB);

  // Add an edge from CurMBB to NewMBB for the fall-through.
  CurMBB.addSuccessor(NewMBB);

  // Splice the code over.
  NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());

  // NewMBB belongs to the same loop as CurMBB.
  if (MLI)
    if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
      ML->addBasicBlockToLoop(NewMBB, MLI->getBase());

  // NewMBB inherits CurMBB's block frequency.
  MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));

  if (UpdateLiveIns)
    computeAndAddLiveIns(LiveRegs, *NewMBB);

  // Add the new block to the EH scope.
  const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
  if (EHScopeI != EHScopeMembership.end()) {
    auto n = EHScopeI->second;
    EHScopeMembership[NewMBB] = n;
  }

  return NewMBB;
}

/// EstimateRuntime - Make a rough estimate for how long it will take to run
/// the specified code.
static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
                                MachineBasicBlock::iterator E) {
  unsigned Time = 0;
  for (; I != E; ++I) {
    if (!countsAsInstruction(*I))
      continue;
    if (I->isCall())
      Time += 10;
    else if (I->mayLoad() || I->mayStore())
      Time += 2;
    else
      ++Time;
  }
  return Time;
}

// CurMBB needs to add an unconditional branch to SuccMBB (we removed these
// branches temporarily for tail merging).  In the case where CurMBB ends
// with a conditional branch to the next block, optimize by reversing the
// test and conditionally branching to SuccMBB instead.
static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
                    const TargetInstrInfo *TII) {
  MachineFunction *MF = CurMBB->getParent();
  MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  DebugLoc dl = CurMBB->findBranchDebugLoc();
  if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
    MachineBasicBlock *NextBB = &*I;
    if (TBB == NextBB && !Cond.empty() && !FBB) {
      if (!TII->reverseBranchCondition(Cond)) {
        TII->removeBranch(*CurMBB);
        TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
        return;
      }
    }
  }
  TII->insertBranch(*CurMBB, SuccBB, nullptr,
                    SmallVector<MachineOperand, 0>(), dl);
}

bool
BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
  if (getHash() < o.getHash())
    return true;
  if (getHash() > o.getHash())
    return false;
  if (getBlock()->getNumber() < o.getBlock()->getNumber())
    return true;
  if (getBlock()->getNumber() > o.getBlock()->getNumber())
    return false;
  // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
  // an object with itself.
#ifndef _GLIBCXX_DEBUG
  llvm_unreachable("Predecessor appears twice");
#else
  return false;
#endif
}

BlockFrequency
BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const {
  auto I = MergedBBFreq.find(MBB);

  if (I != MergedBBFreq.end())
    return I->second;

  return MBFI.getBlockFreq(MBB);
}

void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB,
                                             BlockFrequency F) {
  MergedBBFreq[MBB] = F;
}

raw_ostream &
BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
                                          const MachineBasicBlock *MBB) const {
  return MBFI.printBlockFreq(OS, getBlockFreq(MBB));
}

raw_ostream &
BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
                                          const BlockFrequency Freq) const {
  return MBFI.printBlockFreq(OS, Freq);
}

void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) {
  MBFI.view(Name, isSimple);
}

uint64_t
BranchFolder::MBFIWrapper::getEntryFreq() const {
  return MBFI.getEntryFreq();
}

/// CountTerminators - Count the number of terminators in the given
/// block and set I to the position of the first non-terminator, if there
/// is one, or MBB->end() otherwise.
static unsigned CountTerminators(MachineBasicBlock *MBB,
                                 MachineBasicBlock::iterator &I) {
  I = MBB->end();
  unsigned NumTerms = 0;
  while (true) {
    if (I == MBB->begin()) {
      I = MBB->end();
      break;
    }
    --I;
    if (!I->isTerminator()) break;
    ++NumTerms;
  }
  return NumTerms;
}

/// A no successor, non-return block probably ends in unreachable and is cold.
/// Also consider a block that ends in an indirect branch to be a return block,
/// since many targets use plain indirect branches to return.
static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
  if (!MBB->succ_empty())
    return false;
  if (MBB->empty())
    return true;
  return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
}

/// ProfitableToMerge - Check if two machine basic blocks have a common tail
/// and decide if it would be profitable to merge those tails.  Return the
/// length of the common tail and iterators to the first common instruction
/// in each block.
/// MBB1, MBB2      The blocks to check
/// MinCommonTailLength  Minimum size of tail block to be merged.
/// CommonTailLen   Out parameter to record the size of the shared tail between
///                 MBB1 and MBB2
/// I1, I2          Iterator references that will be changed to point to the first
///                 instruction in the common tail shared by MBB1,MBB2
/// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
///                 relative to SuccBB
/// PredBB          The layout predecessor of SuccBB, if any.
/// EHScopeMembership  map from block to EH scope #.
/// AfterPlacement  True if we are merging blocks after layout. Stricter
///                 thresholds apply to prevent undoing tail-duplication.
static bool
ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
                  unsigned MinCommonTailLength, unsigned &CommonTailLen,
                  MachineBasicBlock::iterator &I1,
                  MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
                  MachineBasicBlock *PredBB,
                  DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
                  bool AfterPlacement) {
  // It is never profitable to tail-merge blocks from two different EH scopes.
  if (!EHScopeMembership.empty()) {
    auto EHScope1 = EHScopeMembership.find(MBB1);
    assert(EHScope1 != EHScopeMembership.end());
    auto EHScope2 = EHScopeMembership.find(MBB2);
    assert(EHScope2 != EHScopeMembership.end());
    if (EHScope1->second != EHScope2->second)
      return false;
  }

  CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
  if (CommonTailLen == 0)
    return false;
  LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
                    << " and " << printMBBReference(*MBB2) << " is "
                    << CommonTailLen << '\n');

  // It's almost always profitable to merge any number of non-terminator
  // instructions with the block that falls through into the common successor.
  // This is true only for a single successor. For multiple successors, we are
  // trading a conditional branch for an unconditional one.
  // TODO: Re-visit successor size for non-layout tail merging.
  if ((MBB1 == PredBB || MBB2 == PredBB) &&
      (!AfterPlacement || MBB1->succ_size() == 1)) {
    MachineBasicBlock::iterator I;
    unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
    if (CommonTailLen > NumTerms)
      return true;
  }

  // If these are identical non-return blocks with no successors, merge them.
  // Such blocks are typically cold calls to noreturn functions like abort, and
  // are unlikely to become a fallthrough target after machine block placement.
  // Tail merging these blocks is unlikely to create additional unconditional
  // branches, and will reduce the size of this cold code.
  if (I1 == MBB1->begin() && I2 == MBB2->begin() &&
      blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
    return true;

  // If one of the blocks can be completely merged and happens to be in
  // a position where the other could fall through into it, merge any number
  // of instructions, because it can be done without a branch.
  // TODO: If the blocks are not adjacent, move one of them so that they are?
  if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin())
    return true;
  if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin())
    return true;

  // If both blocks are identical and end in a branch, merge them unless they
  // both have a fallthrough predecessor and successor.
  // We can only do this after block placement because it depends on whether
  // there are fallthroughs, and we don't know until after layout.
  if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) {
    auto BothFallThrough = [](MachineBasicBlock *MBB) {
      if (MBB->succ_size() != 0 && !MBB->canFallThrough())
        return false;
      MachineFunction::iterator I(MBB);
      MachineFunction *MF = MBB->getParent();
      return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
    };
    if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
      return true;
  }

  // If both blocks have an unconditional branch temporarily stripped out,
  // count that as an additional common instruction for the following
  // heuristics. This heuristic is only accurate for single-succ blocks, so to
  // make sure that during layout merging and duplicating don't crash, we check
  // for that when merging during layout.
  unsigned EffectiveTailLen = CommonTailLen;
  if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
      (MBB1->succ_size() == 1 || !AfterPlacement) &&
      !MBB1->back().isBarrier() &&
      !MBB2->back().isBarrier())
    ++EffectiveTailLen;

  // Check if the common tail is long enough to be worthwhile.
  if (EffectiveTailLen >= MinCommonTailLength)
    return true;

  // If we are optimizing for code size, 2 instructions in common is enough if
  // we don't have to split a block.  At worst we will be introducing 1 new
  // branch instruction, which is likely to be smaller than the 2
  // instructions that would be deleted in the merge.
  MachineFunction *MF = MBB1->getParent();
  return EffectiveTailLen >= 2 && MF->getFunction().hasOptSize() &&
         (I1 == MBB1->begin() || I2 == MBB2->begin());
}

unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
                                        unsigned MinCommonTailLength,
                                        MachineBasicBlock *SuccBB,
                                        MachineBasicBlock *PredBB) {
  unsigned maxCommonTailLength = 0U;
  SameTails.clear();
  MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
  MPIterator HighestMPIter = std::prev(MergePotentials.end());
  for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
                  B = MergePotentials.begin();
       CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
    for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
      unsigned CommonTailLen;
      if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
                            MinCommonTailLength,
                            CommonTailLen, TrialBBI1, TrialBBI2,
                            SuccBB, PredBB,
                            EHScopeMembership,
                            AfterBlockPlacement)) {
        if (CommonTailLen > maxCommonTailLength) {
          SameTails.clear();
          maxCommonTailLength = CommonTailLen;
          HighestMPIter = CurMPIter;
          SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
        }
        if (HighestMPIter == CurMPIter &&
            CommonTailLen == maxCommonTailLength)
          SameTails.push_back(SameTailElt(I, TrialBBI2));
      }
      if (I == B)
        break;
    }
  }
  return maxCommonTailLength;
}

void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
                                        MachineBasicBlock *SuccBB,
                                        MachineBasicBlock *PredBB) {
  MPIterator CurMPIter, B;
  for (CurMPIter = std::prev(MergePotentials.end()),
      B = MergePotentials.begin();
       CurMPIter->getHash() == CurHash; --CurMPIter) {
    // Put the unconditional branch back, if we need one.
    MachineBasicBlock *CurMBB = CurMPIter->getBlock();
    if (SuccBB && CurMBB != PredBB)
      FixTail(CurMBB, SuccBB, TII);
    if (CurMPIter == B)
      break;
  }
  if (CurMPIter->getHash() != CurHash)
    CurMPIter++;
  MergePotentials.erase(CurMPIter, MergePotentials.end());
}

bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
                                             MachineBasicBlock *SuccBB,
                                             unsigned maxCommonTailLength,
                                             unsigned &commonTailIndex) {
  commonTailIndex = 0;
  unsigned TimeEstimate = ~0U;
  for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
    // Use PredBB if possible; that doesn't require a new branch.
    if (SameTails[i].getBlock() == PredBB) {
      commonTailIndex = i;
      break;
    }
    // Otherwise, make a (fairly bogus) choice based on estimate of
    // how long it will take the various blocks to execute.
    unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
                                 SameTails[i].getTailStartPos());
    if (t <= TimeEstimate) {
      TimeEstimate = t;
      commonTailIndex = i;
    }
  }

  MachineBasicBlock::iterator BBI =
    SameTails[commonTailIndex].getTailStartPos();
  MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();

  LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
                    << maxCommonTailLength);

  // If the split block unconditionally falls-thru to SuccBB, it will be
  // merged. In control flow terms it should then take SuccBB's name. e.g. If
  // SuccBB is an inner loop, the common tail is still part of the inner loop.
  const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
    SuccBB->getBasicBlock() : MBB->getBasicBlock();
  MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
  if (!newMBB) {
    LLVM_DEBUG(dbgs() << "... failed!");
    return false;
  }

  SameTails[commonTailIndex].setBlock(newMBB);
  SameTails[commonTailIndex].setTailStartPos(newMBB->begin());

  // If we split PredBB, newMBB is the new predecessor.
  if (PredBB == MBB)
    PredBB = newMBB;

  return true;
}

static void
mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
                MachineBasicBlock &MBBCommon) {
  MachineBasicBlock *MBB = MBBIStartPos->getParent();
  // Note CommonTailLen does not necessarily matches the size of
  // the common BB nor all its instructions because of debug
  // instructions differences.
  unsigned CommonTailLen = 0;
  for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
    ++CommonTailLen;

  MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
  MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
  MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
  MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();

  while (CommonTailLen--) {
    assert(MBBI != MBBIE && "Reached BB end within common tail length!");
    (void)MBBIE;

    if (!countsAsInstruction(*MBBI)) {
      ++MBBI;
      continue;
    }

    while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
      ++MBBICommon;

    assert(MBBICommon != MBBIECommon &&
           "Reached BB end within common tail length!");
    assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");

    // Merge MMOs from memory operations in the common block.
    if (MBBICommon->mayLoad() || MBBICommon->mayStore())
      MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
    // Drop undef flags if they aren't present in all merged instructions.
    for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
      MachineOperand &MO = MBBICommon->getOperand(I);
      if (MO.isReg() && MO.isUndef()) {
        const MachineOperand &OtherMO = MBBI->getOperand(I);
        if (!OtherMO.isUndef())
          MO.setIsUndef(false);
      }
    }

    ++MBBI;
    ++MBBICommon;
  }
}

void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
  MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();

  std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
  for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
    if (i != commonTailIndex) {
      NextCommonInsts[i] = SameTails[i].getTailStartPos();
      mergeOperations(SameTails[i].getTailStartPos(), *MBB);
    } else {
      assert(SameTails[i].getTailStartPos() == MBB->begin() &&
          "MBB is not a common tail only block");
    }
  }

  for (auto &MI : *MBB) {
    if (!countsAsInstruction(MI))
      continue;
    DebugLoc DL = MI.getDebugLoc();
    for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
      if (i == commonTailIndex)
        continue;

      auto &Pos = NextCommonInsts[i];
      assert(Pos != SameTails[i].getBlock()->end() &&
          "Reached BB end within common tail");
      while (!countsAsInstruction(*Pos)) {
        ++Pos;
        assert(Pos != SameTails[i].getBlock()->end() &&
            "Reached BB end within common tail");
      }
      assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
      DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
      NextCommonInsts[i] = ++Pos;
    }
    MI.setDebugLoc(DL);
  }

  if (UpdateLiveIns) {
    LivePhysRegs NewLiveIns(*TRI);
    computeLiveIns(NewLiveIns, *MBB);
    LiveRegs.init(*TRI);

    // The flag merging may lead to some register uses no longer using the
    // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
    for (MachineBasicBlock *Pred : MBB->predecessors()) {
      LiveRegs.clear();
      LiveRegs.addLiveOuts(*Pred);
      MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
      for (unsigned Reg : NewLiveIns) {
        if (!LiveRegs.available(*MRI, Reg))
          continue;
        DebugLoc DL;
        BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
                Reg);
      }
    }

    MBB->clearLiveIns();
    addLiveIns(*MBB, NewLiveIns);
  }
}

// See if any of the blocks in MergePotentials (which all have SuccBB as a
// successor, or all have no successor if it is null) can be tail-merged.
// If there is a successor, any blocks in MergePotentials that are not
// tail-merged and are not immediately before Succ must have an unconditional
// branch to Succ added (but the predecessor/successor lists need no
// adjustment). The lone predecessor of Succ that falls through into Succ,
// if any, is given in PredBB.
// MinCommonTailLength - Except for the special cases below, tail-merge if
// there are at least this many instructions in common.
bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
                                      MachineBasicBlock *PredBB,
                                      unsigned MinCommonTailLength) {
  bool MadeChange = false;

  LLVM_DEBUG(
      dbgs() << "\nTryTailMergeBlocks: ";
      for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
      << printMBBReference(*MergePotentials[i].getBlock())
      << (i == e - 1 ? "" : ", ");
      dbgs() << "\n"; if (SuccBB) {
        dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
        if (PredBB)
          dbgs() << "  which has fall-through from "
                 << printMBBReference(*PredBB) << "\n";
      } dbgs() << "Looking for common tails of at least "
               << MinCommonTailLength << " instruction"
               << (MinCommonTailLength == 1 ? "" : "s") << '\n';);

  // Sort by hash value so that blocks with identical end sequences sort
  // together.
  array_pod_sort(MergePotentials.begin(), MergePotentials.end());

  // Walk through equivalence sets looking for actual exact matches.
  while (MergePotentials.size() > 1) {
    unsigned CurHash = MergePotentials.back().getHash();

    // Build SameTails, identifying the set of blocks with this hash code
    // and with the maximum number of instructions in common.
    unsigned maxCommonTailLength = ComputeSameTails(CurHash,
                                                    MinCommonTailLength,
                                                    SuccBB, PredBB);

    // If we didn't find any pair that has at least MinCommonTailLength
    // instructions in common, remove all blocks with this hash code and retry.
    if (SameTails.empty()) {
      RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
      continue;
    }

    // If one of the blocks is the entire common tail (and not the entry
    // block, which we can't jump to), we can treat all blocks with this same
    // tail at once.  Use PredBB if that is one of the possibilities, as that
    // will not introduce any extra branches.
    MachineBasicBlock *EntryBB =
        &MergePotentials.front().getBlock()->getParent()->front();
    unsigned commonTailIndex = SameTails.size();
    // If there are two blocks, check to see if one can be made to fall through
    // into the other.
    if (SameTails.size() == 2 &&
        SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
        SameTails[1].tailIsWholeBlock())
      commonTailIndex = 1;
    else if (SameTails.size() == 2 &&
             SameTails[1].getBlock()->isLayoutSuccessor(
                                                     SameTails[0].getBlock()) &&
             SameTails[0].tailIsWholeBlock())
      commonTailIndex = 0;
    else {
      // Otherwise just pick one, favoring the fall-through predecessor if
      // there is one.
      for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
        MachineBasicBlock *MBB = SameTails[i].getBlock();
        if (MBB == EntryBB && SameTails[i].tailIsWholeBlock())
          continue;
        if (MBB == PredBB) {
          commonTailIndex = i;
          break;
        }
        if (SameTails[i].tailIsWholeBlock())
          commonTailIndex = i;
      }
    }

    if (commonTailIndex == SameTails.size() ||
        (SameTails[commonTailIndex].getBlock() == PredBB &&
         !SameTails[commonTailIndex].tailIsWholeBlock())) {
      // None of the blocks consist entirely of the common tail.
      // Split a block so that one does.
      if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
                                     maxCommonTailLength, commonTailIndex)) {
        RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
        continue;
      }
    }

    MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();

    // Recompute common tail MBB's edge weights and block frequency.
    setCommonTailEdgeWeights(*MBB);

    // Merge debug locations, MMOs and undef flags across identical instructions
    // for common tail.
    mergeCommonTails(commonTailIndex);

    // MBB is common tail.  Adjust all other BB's to jump to this one.
    // Traversal must be forwards so erases work.
    LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
                      << " for ");
    for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
      if (commonTailIndex == i)
        continue;
      LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
                        << (i == e - 1 ? "" : ", "));
      // Hack the end off BB i, making it jump to BB commonTailIndex instead.
      replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
      // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
      MergePotentials.erase(SameTails[i].getMPIter());
    }
    LLVM_DEBUG(dbgs() << "\n");
    // We leave commonTailIndex in the worklist in case there are other blocks
    // that match it with a smaller number of instructions.
    MadeChange = true;
  }
  return MadeChange;
}

bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
  bool MadeChange = false;
  if (!EnableTailMerge)
    return MadeChange;

  // First find blocks with no successors.
  // Block placement may create new tail merging opportunities for these blocks.
  MergePotentials.clear();
  for (MachineBasicBlock &MBB : MF) {
    if (MergePotentials.size() == TailMergeThreshold)
      break;
    if (!TriedMerging.count(&MBB) && MBB.succ_empty())
      MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
  }

  // If this is a large problem, avoid visiting the same basic blocks
  // multiple times.
  if (MergePotentials.size() == TailMergeThreshold)
    for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
      TriedMerging.insert(MergePotentials[i].getBlock());

  // See if we can do any tail merging on those.
  if (MergePotentials.size() >= 2)
    MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);

  // Look at blocks (IBB) with multiple predecessors (PBB).
  // We change each predecessor to a canonical form, by
  // (1) temporarily removing any unconditional branch from the predecessor
  // to IBB, and
  // (2) alter conditional branches so they branch to the other block
  // not IBB; this may require adding back an unconditional branch to IBB
  // later, where there wasn't one coming in.  E.g.
  //   Bcc IBB
  //   fallthrough to QBB
  // here becomes
  //   Bncc QBB
  // with a conceptual B to IBB after that, which never actually exists.
  // With those changes, we see whether the predecessors' tails match,
  // and merge them if so.  We change things out of canonical form and
  // back to the way they were later in the process.  (OptimizeBranches
  // would undo some of this, but we can't use it, because we'd get into
  // a compile-time infinite loop repeatedly doing and undoing the same
  // transformations.)

  for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
       I != E; ++I) {
    if (I->pred_size() < 2) continue;
    SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
    MachineBasicBlock *IBB = &*I;
    MachineBasicBlock *PredBB = &*std::prev(I);
    MergePotentials.clear();
    MachineLoop *ML;

    // Bail if merging after placement and IBB is the loop header because
    // -- If merging predecessors that belong to the same loop as IBB, the
    // common tail of merged predecessors may become the loop top if block
    // placement is called again and the predecessors may branch to this common
    // tail and require more branches. This can be relaxed if
    // MachineBlockPlacement::findBestLoopTop is more flexible.
    // --If merging predecessors that do not belong to the same loop as IBB, the
    // loop info of IBB's loop and the other loops may be affected. Calling the
    // block placement again may make big change to the layout and eliminate the
    // reason to do tail merging here.
    if (AfterBlockPlacement && MLI) {
      ML = MLI->getLoopFor(IBB);
      if (ML && IBB == ML->getHeader())
        continue;
    }

    for (MachineBasicBlock *PBB : I->predecessors()) {
      if (MergePotentials.size() == TailMergeThreshold)
        break;

      if (TriedMerging.count(PBB))
        continue;

      // Skip blocks that loop to themselves, can't tail merge these.
      if (PBB == IBB)
        continue;

      // Visit each predecessor only once.
      if (!UniquePreds.insert(PBB).second)
        continue;

      // Skip blocks which may jump to a landing pad. Can't tail merge these.
      if (PBB->hasEHPadSuccessor())
        continue;

      // After block placement, only consider predecessors that belong to the
      // same loop as IBB.  The reason is the same as above when skipping loop
      // header.
      if (AfterBlockPlacement && MLI)
        if (ML != MLI->getLoopFor(PBB))
          continue;

      MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
      SmallVector<MachineOperand, 4> Cond;
      if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
        // Failing case: IBB is the target of a cbr, and we cannot reverse the
        // branch.
        SmallVector<MachineOperand, 4> NewCond(Cond);
        if (!Cond.empty() && TBB == IBB) {
          if (TII->reverseBranchCondition(NewCond))
            continue;
          // This is the QBB case described above
          if (!FBB) {
            auto Next = ++PBB->getIterator();
            if (Next != MF.end())
              FBB = &*Next;
          }
        }

        // Remove the unconditional branch at the end, if any.
        if (TBB && (Cond.empty() || FBB)) {
          DebugLoc dl = PBB->findBranchDebugLoc();
          TII->removeBranch(*PBB);
          if (!Cond.empty())
            // reinsert conditional branch only, for now
            TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
                              NewCond, dl);
        }

        MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
      }
    }

    // If this is a large problem, avoid visiting the same basic blocks multiple
    // times.
    if (MergePotentials.size() == TailMergeThreshold)
      for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
        TriedMerging.insert(MergePotentials[i].getBlock());

    if (MergePotentials.size() >= 2)
      MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);

    // Reinsert an unconditional branch if needed. The 1 below can occur as a
    // result of removing blocks in TryTailMergeBlocks.
    PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
    if (MergePotentials.size() == 1 &&
        MergePotentials.begin()->getBlock() != PredBB)
      FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
  }

  return MadeChange;
}

void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
  SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
  BlockFrequency AccumulatedMBBFreq;

  // Aggregate edge frequency of successor edge j:
  //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
  //  where bb is a basic block that is in SameTails.
  for (const auto &Src : SameTails) {
    const MachineBasicBlock *SrcMBB = Src.getBlock();
    BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
    AccumulatedMBBFreq += BlockFreq;

    // It is not necessary to recompute edge weights if TailBB has less than two
    // successors.
    if (TailMBB.succ_size() <= 1)
      continue;

    auto EdgeFreq = EdgeFreqLs.begin();

    for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
         SuccI != SuccE; ++SuccI, ++EdgeFreq)
      *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
  }

  MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);

  if (TailMBB.succ_size() <= 1)
    return;

  auto SumEdgeFreq =
      std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
          .getFrequency();
  auto EdgeFreq = EdgeFreqLs.begin();

  if (SumEdgeFreq > 0) {
    for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
         SuccI != SuccE; ++SuccI, ++EdgeFreq) {
      auto Prob = BranchProbability::getBranchProbability(
          EdgeFreq->getFrequency(), SumEdgeFreq);
      TailMBB.setSuccProbability(SuccI, Prob);
    }
  }
}

//===----------------------------------------------------------------------===//
//  Branch Optimization
//===----------------------------------------------------------------------===//

bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
  bool MadeChange = false;

  // Make sure blocks are numbered in order
  MF.RenumberBlocks();
  // Renumbering blocks alters EH scope membership, recalculate it.
  EHScopeMembership = getEHScopeMembership(MF);

  for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
       I != E; ) {
    MachineBasicBlock *MBB = &*I++;
    MadeChange |= OptimizeBlock(MBB);

    // If it is dead, remove it.
    if (MBB->pred_empty()) {
      RemoveDeadBlock(MBB);
      MadeChange = true;
      ++NumDeadBlocks;
    }
  }

  return MadeChange;
}

// Blocks should be considered empty if they contain only debug info;
// else the debug info would affect codegen.
static bool IsEmptyBlock(MachineBasicBlock *MBB) {
  return MBB->getFirstNonDebugInstr() == MBB->end();
}

// Blocks with only debug info and branches should be considered the same
// as blocks with only branches.
static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
  MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
  assert(I != MBB->end() && "empty block!");
  return I->isBranch();
}

/// IsBetterFallthrough - Return true if it would be clearly better to
/// fall-through to MBB1 than to fall through into MBB2.  This has to return
/// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
/// result in infinite loops.
static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
                                MachineBasicBlock *MBB2) {
  assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");

  // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
  // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
  // optimize branches that branch to either a return block or an assert block
  // into a fallthrough to the return.
  MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
  MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
  if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
    return false;

  // If there is a clear successor ordering we make sure that one block
  // will fall through to the next
  if (MBB1->isSuccessor(MBB2)) return true;
  if (MBB2->isSuccessor(MBB1)) return false;

  return MBB2I->isCall() && !MBB1I->isCall();
}

/// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
/// instructions on the block.
static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I != MBB.end() && I->isBranch())
    return I->getDebugLoc();
  return DebugLoc();
}

static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
                                       MachineBasicBlock &MBB,
                                       MachineBasicBlock &PredMBB) {
  auto InsertBefore = PredMBB.getFirstTerminator();
  for (MachineInstr &MI : MBB.instrs())
    if (MI.isDebugInstr()) {
      TII->duplicate(PredMBB, InsertBefore, MI);
      LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
                        << MI);
    }
}

static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
                                     MachineBasicBlock &MBB,
                                     MachineBasicBlock &SuccMBB) {
  auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
  for (MachineInstr &MI : MBB.instrs())
    if (MI.isDebugInstr()) {
      TII->duplicate(SuccMBB, InsertBefore, MI);
      LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
                        << MI);
    }
}

// Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
// a basic block is removed we would lose the debug information unless we have
// copied the information to a predecessor/successor.
//
// TODO: This function only handles some simple cases. An alternative would be
// to run a heavier analysis, such as the LiveDebugValues pass, before we do
// branch folding.
static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
                                           MachineBasicBlock &MBB) {
  assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
  // If this MBB is the only predecessor of a successor it is legal to copy
  // DBG_VALUE instructions to the beginning of the successor.
  for (MachineBasicBlock *SuccBB : MBB.successors())
    if (SuccBB->pred_size() == 1)
      copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
  // If this MBB is the only successor of a predecessor it is legal to copy the
  // DBG_VALUE instructions to the end of the predecessor (just before the
  // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
  for (MachineBasicBlock *PredBB : MBB.predecessors())
    if (PredBB->succ_size() == 1)
      copyDebugInfoToPredecessor(TII, MBB, *PredBB);
}

bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
  bool MadeChange = false;
  MachineFunction &MF = *MBB->getParent();
ReoptimizeBlock:

  MachineFunction::iterator FallThrough = MBB->getIterator();
  ++FallThrough;

  // Make sure MBB and FallThrough belong to the same EH scope.
  bool SameEHScope = true;
  if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
    auto MBBEHScope = EHScopeMembership.find(MBB);
    assert(MBBEHScope != EHScopeMembership.end());
    auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
    assert(FallThroughEHScope != EHScopeMembership.end());
    SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
  }

  // If this block is empty, make everyone use its fall-through, not the block
  // explicitly.  Landing pads should not do this since the landing-pad table
  // points to this block.  Blocks with their addresses taken shouldn't be
  // optimized away.
  if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
      SameEHScope) {
    salvageDebugInfoFromEmptyBlock(TII, *MBB);
    // Dead block?  Leave for cleanup later.
    if (MBB->pred_empty()) return MadeChange;

    if (FallThrough == MF.end()) {
      // TODO: Simplify preds to not branch here if possible!
    } else if (FallThrough->isEHPad()) {
      // Don't rewrite to a landing pad fallthough.  That could lead to the case
      // where a BB jumps to more than one landing pad.
      // TODO: Is it ever worth rewriting predecessors which don't already
      // jump to a landing pad, and so can safely jump to the fallthrough?
    } else if (MBB->isSuccessor(&*FallThrough)) {
      // Rewrite all predecessors of the old block to go to the fallthrough
      // instead.
      while (!MBB->pred_empty()) {
        MachineBasicBlock *Pred = *(MBB->pred_end()-1);
        Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
      }
      // If MBB was the target of a jump table, update jump tables to go to the
      // fallthrough instead.
      if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
        MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
      MadeChange = true;
    }
    return MadeChange;
  }

  // Check to see if we can simplify the terminator of the block before this
  // one.
  MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));

  MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
  SmallVector<MachineOperand, 4> PriorCond;
  bool PriorUnAnalyzable =
      TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
  if (!PriorUnAnalyzable) {
    // If the CFG for the prior block has extra edges, remove them.
    MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB,
                                              !PriorCond.empty());

    // If the previous branch is conditional and both conditions go to the same
    // destination, remove the branch, replacing it with an unconditional one or
    // a fall-through.
    if (PriorTBB && PriorTBB == PriorFBB) {
      DebugLoc dl = getBranchDebugLoc(PrevBB);
      TII->removeBranch(PrevBB);
      PriorCond.clear();
      if (PriorTBB != MBB)
        TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
      MadeChange = true;
      ++NumBranchOpts;
      goto ReoptimizeBlock;
    }

    // If the previous block unconditionally falls through to this block and
    // this block has no other predecessors, move the contents of this block
    // into the prior block. This doesn't usually happen when SimplifyCFG
    // has been used, but it can happen if tail merging splits a fall-through
    // predecessor of a block.
    // This has to check PrevBB->succ_size() because EH edges are ignored by
    // AnalyzeBranch.
    if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
        PrevBB.succ_size() == 1 &&
        !MBB->hasAddressTaken() && !MBB->isEHPad()) {
      LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
                        << "From MBB: " << *MBB);
      // Remove redundant DBG_VALUEs first.
      if (PrevBB.begin() != PrevBB.end()) {
        MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
        --PrevBBIter;
        MachineBasicBlock::iterator MBBIter = MBB->begin();
        // Check if DBG_VALUE at the end of PrevBB is identical to the
        // DBG_VALUE at the beginning of MBB.
        while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
               && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
          if (!MBBIter->isIdenticalTo(*PrevBBIter))
            break;
          MachineInstr &DuplicateDbg = *MBBIter;
          ++MBBIter; -- PrevBBIter;
          DuplicateDbg.eraseFromParent();
        }
      }
      PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
      PrevBB.removeSuccessor(PrevBB.succ_begin());
      assert(PrevBB.succ_empty());
      PrevBB.transferSuccessors(MBB);
      MadeChange = true;
      return MadeChange;
    }

    // If the previous branch *only* branches to *this* block (conditional or
    // not) remove the branch.
    if (PriorTBB == MBB && !PriorFBB) {
      TII->removeBranch(PrevBB);
      MadeChange = true;
      ++NumBranchOpts;
      goto ReoptimizeBlock;
    }

    // If the prior block branches somewhere else on the condition and here if
    // the condition is false, remove the uncond second branch.
    if (PriorFBB == MBB) {
      DebugLoc dl = getBranchDebugLoc(PrevBB);
      TII->removeBranch(PrevBB);
      TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
      MadeChange = true;
      ++NumBranchOpts;
      goto ReoptimizeBlock;
    }

    // If the prior block branches here on true and somewhere else on false, and
    // if the branch condition is reversible, reverse the branch to create a
    // fall-through.
    if (PriorTBB == MBB) {
      SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
      if (!TII->reverseBranchCondition(NewPriorCond)) {
        DebugLoc dl = getBranchDebugLoc(PrevBB);
        TII->removeBranch(PrevBB);
        TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
        MadeChange = true;
        ++NumBranchOpts;
        goto ReoptimizeBlock;
      }
    }

    // If this block has no successors (e.g. it is a return block or ends with
    // a call to a no-return function like abort or __cxa_throw) and if the pred
    // falls through into this block, and if it would otherwise fall through
    // into the block after this, move this block to the end of the function.
    //
    // We consider it more likely that execution will stay in the function (e.g.
    // due to loops) than it is to exit it.  This asserts in loops etc, moving
    // the assert condition out of the loop body.
    if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
        MachineFunction::iterator(PriorTBB) == FallThrough &&
        !MBB->canFallThrough()) {
      bool DoTransform = true;

      // We have to be careful that the succs of PredBB aren't both no-successor
      // blocks.  If neither have successors and if PredBB is the second from
      // last block in the function, we'd just keep swapping the two blocks for
      // last.  Only do the swap if one is clearly better to fall through than
      // the other.
      if (FallThrough == --MF.end() &&
          !IsBetterFallthrough(PriorTBB, MBB))
        DoTransform = false;

      if (DoTransform) {
        // Reverse the branch so we will fall through on the previous true cond.
        SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
        if (!TII->reverseBranchCondition(NewPriorCond)) {
          LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
                            << "To make fallthrough to: " << *PriorTBB << "\n");

          DebugLoc dl = getBranchDebugLoc(PrevBB);
          TII->removeBranch(PrevBB);
          TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);

          // Move this block to the end of the function.
          MBB->moveAfter(&MF.back());
          MadeChange = true;
          ++NumBranchOpts;
          return MadeChange;
        }
      }
    }
  }

  if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 &&
      MF.getFunction().hasOptSize()) {
    // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
    // direction, thereby defeating careful block placement and regressing
    // performance. Therefore, only consider this for optsize functions.
    MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
    if (TII->isUnconditionalTailCall(TailCall)) {
      MachineBasicBlock *Pred = *MBB->pred_begin();
      MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
      SmallVector<MachineOperand, 4> PredCond;
      bool PredAnalyzable =
          !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);

      if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
          PredTBB != PredFBB) {
        // The predecessor has a conditional branch to this block which consists
        // of only a tail call. Try to fold the tail call into the conditional
        // branch.
        if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
          // TODO: It would be nice if analyzeBranch() could provide a pointer
          // to the branch instruction so replaceBranchWithTailCall() doesn't
          // have to search for it.
          TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
          ++NumTailCalls;
          Pred->removeSuccessor(MBB);
          MadeChange = true;
          return MadeChange;
        }
      }
      // If the predecessor is falling through to this block, we could reverse
      // the branch condition and fold the tail call into that. However, after
      // that we might have to re-arrange the CFG to fall through to the other
      // block and there is a high risk of regressing code size rather than
      // improving it.
    }
  }

  // Analyze the branch in the current block.
  MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
  SmallVector<MachineOperand, 4> CurCond;
  bool CurUnAnalyzable =
      TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
  if (!CurUnAnalyzable) {
    // If the CFG for the prior block has extra edges, remove them.
    MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty());

    // If this is a two-way branch, and the FBB branches to this block, reverse
    // the condition so the single-basic-block loop is faster.  Instead of:
    //    Loop: xxx; jcc Out; jmp Loop
    // we want:
    //    Loop: xxx; jncc Loop; jmp Out
    if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
      SmallVector<MachineOperand, 4> NewCond(CurCond);
      if (!TII->reverseBranchCondition(NewCond)) {
        DebugLoc dl = getBranchDebugLoc(*MBB);
        TII->removeBranch(*MBB);
        TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
        MadeChange = true;
        ++NumBranchOpts;
        goto ReoptimizeBlock;
      }
    }

    // If this branch is the only thing in its block, see if we can forward
    // other blocks across it.
    if (CurTBB && CurCond.empty() && !CurFBB &&
        IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
        !MBB->hasAddressTaken() && !MBB->isEHPad()) {
      DebugLoc dl = getBranchDebugLoc(*MBB);
      // This block may contain just an unconditional branch.  Because there can
      // be 'non-branch terminators' in the block, try removing the branch and
      // then seeing if the block is empty.
      TII->removeBranch(*MBB);
      // If the only things remaining in the block are debug info, remove these
      // as well, so this will behave the same as an empty block in non-debug
      // mode.
      if (IsEmptyBlock(MBB)) {
        // Make the block empty, losing the debug info (we could probably
        // improve this in some cases.)
        MBB->erase(MBB->begin(), MBB->end());
      }
      // If this block is just an unconditional branch to CurTBB, we can
      // usually completely eliminate the block.  The only case we cannot
      // completely eliminate the block is when the block before this one
      // falls through into MBB and we can't understand the prior block's branch
      // condition.
      if (MBB->empty()) {
        bool PredHasNoFallThrough = !PrevBB.canFallThrough();
        if (PredHasNoFallThrough || !PriorUnAnalyzable ||
            !PrevBB.isSuccessor(MBB)) {
          // If the prior block falls through into us, turn it into an
          // explicit branch to us to make updates simpler.
          if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
              PriorTBB != MBB && PriorFBB != MBB) {
            if (!PriorTBB) {
              assert(PriorCond.empty() && !PriorFBB &&
                     "Bad branch analysis");
              PriorTBB = MBB;
            } else {
              assert(!PriorFBB && "Machine CFG out of date!");
              PriorFBB = MBB;
            }
            DebugLoc pdl = getBranchDebugLoc(PrevBB);
            TII->removeBranch(PrevBB);
            TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
          }

          // Iterate through all the predecessors, revectoring each in-turn.
          size_t PI = 0;
          bool DidChange = false;
          bool HasBranchToSelf = false;
          while(PI != MBB->pred_size()) {
            MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
            if (PMBB == MBB) {
              // If this block has an uncond branch to itself, leave it.
              ++PI;
              HasBranchToSelf = true;
            } else {
              DidChange = true;
              PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
              // If this change resulted in PMBB ending in a conditional
              // branch where both conditions go to the same destination,
              // change this to an unconditional branch (and fix the CFG).
              MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
              SmallVector<MachineOperand, 4> NewCurCond;
              bool NewCurUnAnalyzable = TII->analyzeBranch(
                  *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
              if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
                DebugLoc pdl = getBranchDebugLoc(*PMBB);
                TII->removeBranch(*PMBB);
                NewCurCond.clear();
                TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
                MadeChange = true;
                ++NumBranchOpts;
                PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false);
              }
            }
          }

          // Change any jumptables to go to the new MBB.
          if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
            MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
          if (DidChange) {
            ++NumBranchOpts;
            MadeChange = true;
            if (!HasBranchToSelf) return MadeChange;
          }
        }
      }

      // Add the branch back if the block is more than just an uncond branch.
      TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
    }
  }

  // If the prior block doesn't fall through into this block, and if this
  // block doesn't fall through into some other block, see if we can find a
  // place to move this block where a fall-through will happen.
  if (!PrevBB.canFallThrough()) {
    // Now we know that there was no fall-through into this block, check to
    // see if it has a fall-through into its successor.
    bool CurFallsThru = MBB->canFallThrough();

    if (!MBB->isEHPad()) {
      // Check all the predecessors of this block.  If one of them has no fall
      // throughs, move this block right after it.
      for (MachineBasicBlock *PredBB : MBB->predecessors()) {
        // Analyze the branch at the end of the pred.
        MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
        SmallVector<MachineOperand, 4> PredCond;
        if (PredBB != MBB && !PredBB->canFallThrough() &&
            !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
            (!CurFallsThru || !CurTBB || !CurFBB) &&
            (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
          // If the current block doesn't fall through, just move it.
          // If the current block can fall through and does not end with a
          // conditional branch, we need to append an unconditional jump to
          // the (current) next block.  To avoid a possible compile-time
          // infinite loop, move blocks only backward in this case.
          // Also, if there are already 2 branches here, we cannot add a third;
          // this means we have the case
          // Bcc next
          // B elsewhere
          // next:
          if (CurFallsThru) {
            MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
            CurCond.clear();
            TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
          }
          MBB->moveAfter(PredBB);
          MadeChange = true;
          goto ReoptimizeBlock;
        }
      }
    }

    if (!CurFallsThru) {
      // Check all successors to see if we can move this block before it.
      for (MachineBasicBlock *SuccBB : MBB->successors()) {
        // Analyze the branch at the end of the block before the succ.
        MachineFunction::iterator SuccPrev = --SuccBB->getIterator();

        // If this block doesn't already fall-through to that successor, and if
        // the succ doesn't already have a block that can fall through into it,
        // and if the successor isn't an EH destination, we can arrange for the
        // fallthrough to happen.
        if (SuccBB != MBB && &*SuccPrev != MBB &&
            !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
            !SuccBB->isEHPad()) {
          MBB->moveBefore(SuccBB);
          MadeChange = true;
          goto ReoptimizeBlock;
        }
      }

      // Okay, there is no really great place to put this block.  If, however,
      // the block before this one would be a fall-through if this block were
      // removed, move this block to the end of the function. There is no real
      // advantage in "falling through" to an EH block, so we don't want to
      // perform this transformation for that case.
      //
      // Also, Windows EH introduced the possibility of an arbitrary number of
      // successors to a given block.  The analyzeBranch call does not consider
      // exception handling and so we can get in a state where a block
      // containing a call is followed by multiple EH blocks that would be
      // rotated infinitely at the end of the function if the transformation
      // below were performed for EH "FallThrough" blocks.  Therefore, even if
      // that appears not to be happening anymore, we should assume that it is
      // possible and not remove the "!FallThrough()->isEHPad" condition below.
      MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
      SmallVector<MachineOperand, 4> PrevCond;
      if (FallThrough != MF.end() &&
          !FallThrough->isEHPad() &&
          !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
          PrevBB.isSuccessor(&*FallThrough)) {
        MBB->moveAfter(&MF.back());
        MadeChange = true;
        return MadeChange;
      }
    }
  }

  return MadeChange;
}

//===----------------------------------------------------------------------===//
//  Hoist Common Code
//===----------------------------------------------------------------------===//

bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
  bool MadeChange = false;
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
    MachineBasicBlock *MBB = &*I++;
    MadeChange |= HoistCommonCodeInSuccs(MBB);
  }

  return MadeChange;
}

/// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
/// its 'true' successor.
static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
                                         MachineBasicBlock *TrueBB) {
  for (MachineBasicBlock *SuccBB : BB->successors())
    if (SuccBB != TrueBB)
      return SuccBB;
  return nullptr;
}

template <class Container>
static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI,
                                Container &Set) {
  if (Register::isPhysicalRegister(Reg)) {
    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
      Set.insert(*AI);
  } else {
    Set.insert(Reg);
  }
}

/// findHoistingInsertPosAndDeps - Find the location to move common instructions
/// in successors to. The location is usually just before the terminator,
/// however if the terminator is a conditional branch and its previous
/// instruction is the flag setting instruction, the previous instruction is
/// the preferred location. This function also gathers uses and defs of the
/// instructions from the insertion point to the end of the block. The data is
/// used by HoistCommonCodeInSuccs to ensure safety.
static
MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
                                                  const TargetInstrInfo *TII,
                                                  const TargetRegisterInfo *TRI,
                                                  SmallSet<unsigned,4> &Uses,
                                                  SmallSet<unsigned,4> &Defs) {
  MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
  if (!TII->isUnpredicatedTerminator(*Loc))
    return MBB->end();

  for (const MachineOperand &MO : Loc->operands()) {
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    if (MO.isUse()) {
      addRegAndItsAliases(Reg, TRI, Uses);
    } else {
      if (!MO.isDead())
        // Don't try to hoist code in the rare case the terminator defines a
        // register that is later used.
        return MBB->end();

      // If the terminator defines a register, make sure we don't hoist
      // the instruction whose def might be clobbered by the terminator.
      addRegAndItsAliases(Reg, TRI, Defs);
    }
  }

  if (Uses.empty())
    return Loc;
  // If the terminator is the only instruction in the block and Uses is not
  // empty (or we would have returned above), we can still safely hoist
  // instructions just before the terminator as long as the Defs/Uses are not
  // violated (which is checked in HoistCommonCodeInSuccs).
  if (Loc == MBB->begin())
    return Loc;

  // The terminator is probably a conditional branch, try not to separate the
  // branch from condition setting instruction.
  MachineBasicBlock::iterator PI =
    skipDebugInstructionsBackward(std::prev(Loc), MBB->begin());

  bool IsDef = false;
  for (const MachineOperand &MO : PI->operands()) {
    // If PI has a regmask operand, it is probably a call. Separate away.
    if (MO.isRegMask())
      return Loc;
    if (!MO.isReg() || MO.isUse())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    if (Uses.count(Reg)) {
      IsDef = true;
      break;
    }
  }
  if (!IsDef)
    // The condition setting instruction is not just before the conditional
    // branch.
    return Loc;

  // Be conservative, don't insert instruction above something that may have
  // side-effects. And since it's potentially bad to separate flag setting
  // instruction from the conditional branch, just abort the optimization
  // completely.
  // Also avoid moving code above predicated instruction since it's hard to
  // reason about register liveness with predicated instruction.
  bool DontMoveAcrossStore = true;
  if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
    return MBB->end();

  // Find out what registers are live. Note this routine is ignoring other live
  // registers which are only used by instructions in successor blocks.
  for (const MachineOperand &MO : PI->operands()) {
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    if (MO.isUse()) {
      addRegAndItsAliases(Reg, TRI, Uses);
    } else {
      if (Uses.erase(Reg)) {
        if (Register::isPhysicalRegister(Reg)) {
          for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
            Uses.erase(*SubRegs); // Use sub-registers to be conservative
        }
      }
      addRegAndItsAliases(Reg, TRI, Defs);
    }
  }

  return PI;
}

bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
    return false;

  if (!FBB) FBB = findFalseBlock(MBB, TBB);
  if (!FBB)
    // Malformed bcc? True and false blocks are the same?
    return false;

  // Restrict the optimization to cases where MBB is the only predecessor,
  // it is an obvious win.
  if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
    return false;

  // Find a suitable position to hoist the common instructions to. Also figure
  // out which registers are used or defined by instructions from the insertion
  // point to the end of the block.
  SmallSet<unsigned, 4> Uses, Defs;
  MachineBasicBlock::iterator Loc =
    findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
  if (Loc == MBB->end())
    return false;

  bool HasDups = false;
  SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet;
  MachineBasicBlock::iterator TIB = TBB->begin();
  MachineBasicBlock::iterator FIB = FBB->begin();
  MachineBasicBlock::iterator TIE = TBB->end();
  MachineBasicBlock::iterator FIE = FBB->end();
  while (TIB != TIE && FIB != FIE) {
    // Skip dbg_value instructions. These do not count.
    TIB = skipDebugInstructionsForward(TIB, TIE);
    FIB = skipDebugInstructionsForward(FIB, FIE);
    if (TIB == TIE || FIB == FIE)
      break;

    if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
      break;

    if (TII->isPredicated(*TIB))
      // Hard to reason about register liveness with predicated instruction.
      break;

    bool IsSafe = true;
    for (MachineOperand &MO : TIB->operands()) {
      // Don't attempt to hoist instructions with register masks.
      if (MO.isRegMask()) {
        IsSafe = false;
        break;
      }
      if (!MO.isReg())
        continue;
      Register Reg = MO.getReg();
      if (!Reg)
        continue;
      if (MO.isDef()) {
        if (Uses.count(Reg)) {
          // Avoid clobbering a register that's used by the instruction at
          // the point of insertion.
          IsSafe = false;
          break;
        }

        if (Defs.count(Reg) && !MO.isDead()) {
          // Don't hoist the instruction if the def would be clobber by the
          // instruction at the point insertion. FIXME: This is overly
          // conservative. It should be possible to hoist the instructions
          // in BB2 in the following example:
          // BB1:
          // r1, eflag = op1 r2, r3
          // brcc eflag
          //
          // BB2:
          // r1 = op2, ...
          //    = op3, killed r1
          IsSafe = false;
          break;
        }
      } else if (!ActiveDefsSet.count(Reg)) {
        if (Defs.count(Reg)) {
          // Use is defined by the instruction at the point of insertion.
          IsSafe = false;
          break;
        }

        if (MO.isKill() && Uses.count(Reg))
          // Kills a register that's read by the instruction at the point of
          // insertion. Remove the kill marker.
          MO.setIsKill(false);
      }
    }
    if (!IsSafe)
      break;

    bool DontMoveAcrossStore = true;
    if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
      break;

    // Remove kills from ActiveDefsSet, these registers had short live ranges.
    for (const MachineOperand &MO : TIB->operands()) {
      if (!MO.isReg() || !MO.isUse() || !MO.isKill())
        continue;
      Register Reg = MO.getReg();
      if (!Reg)
        continue;
      if (!AllDefsSet.count(Reg)) {
        continue;
      }
      if (Register::isPhysicalRegister(Reg)) {
        for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
          ActiveDefsSet.erase(*AI);
      } else {
        ActiveDefsSet.erase(Reg);
      }
    }

    // Track local defs so we can update liveins.
    for (const MachineOperand &MO : TIB->operands()) {
      if (!MO.isReg() || !MO.isDef() || MO.isDead())
        continue;
      Register Reg = MO.getReg();
      if (!Reg || Register::isVirtualRegister(Reg))
        continue;
      addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
      addRegAndItsAliases(Reg, TRI, AllDefsSet);
    }

    HasDups = true;
    ++TIB;
    ++FIB;
  }

  if (!HasDups)
    return false;

  MBB->splice(Loc, TBB, TBB->begin(), TIB);
  FBB->erase(FBB->begin(), FIB);

  if (UpdateLiveIns) {
    recomputeLiveIns(*TBB);
    recomputeLiveIns(*FBB);
  }

  ++NumHoist;
  return true;
}