reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
//===-- Graph.h - XRay Graph Class ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A Graph Datatype for XRay.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_XRAY_GRAPH_T_H
#define LLVM_XRAY_GRAPH_T_H

#include <initializer_list>
#include <stdint.h>
#include <type_traits>
#include <utility>

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/Error.h"

namespace llvm {
namespace xray {

/// A Graph object represents a Directed Graph and is used in XRay to compute
/// and store function call graphs and associated statistical information.
///
/// The graph takes in four template parameters, these are:
///  - VertexAttribute, this is a structure which is stored for each vertex.
///    Must be DefaultConstructible, CopyConstructible, CopyAssignable and
///    Destructible.
///  - EdgeAttribute, this is a structure which is stored for each edge
///    Must be DefaultConstructible, CopyConstructible, CopyAssignable and
///    Destructible.
///  - EdgeAttribute, this is a structure which is stored for each variable
///  - VI, this is a type over which DenseMapInfo is defined and is the type
///    used look up strings, available as VertexIdentifier.
///  - If the built in DenseMapInfo is not defined, provide a specialization
///    class type here.
///
/// Graph is CopyConstructible, CopyAssignable, MoveConstructible and
/// MoveAssignable but is not EqualityComparible or LessThanComparible.
///
/// Usage Example Graph with weighted edges and vertices:
///   Graph<int, int, int> G;
///
///   G[1] = 0;
///   G[2] = 2;
///   G[{1,2}] = 1;
///   G[{2,1}] = -1;
///   for(const auto &v : G.vertices()){
///     // Do something with the vertices in the graph;
///   }
///   for(const auto &e : G.edges()){
///     // Do something with the edges in the graph;
///   }
///
/// Usage Example with StrRef keys.
///   Graph<int, double, StrRef> StrG;
///    char va[] = "Vertex A";
///    char vaa[] = "Vertex A";
///    char vb[] = "Vertex B"; // Vertices are referenced by String Refs.
///    G[va] = 0;
///    G[vb] = 1;
///    G[{va, vb}] = 1.0;
///    cout() << G[vaa] << " " << G[{vaa, vb}]; //prints "0 1.0".
///
template <typename VertexAttribute, typename EdgeAttribute,
          typename VI = int32_t>
class Graph {
public:
  /// These objects are used to name edges and vertices in the graph.
  typedef VI VertexIdentifier;
  typedef std::pair<VI, VI> EdgeIdentifier;

  /// This type is the value_type of all iterators which range over vertices,
  /// Determined by the Vertices DenseMap
  using VertexValueType =
      detail::DenseMapPair<VertexIdentifier, VertexAttribute>;

  /// This type is the value_type of all iterators which range over edges,
  /// Determined by the Edges DenseMap.
  using EdgeValueType = detail::DenseMapPair<EdgeIdentifier, EdgeAttribute>;

  using size_type = std::size_t;

private:
  /// The type used for storing the EdgeAttribute for each edge in the graph
  using EdgeMapT = DenseMap<EdgeIdentifier, EdgeAttribute>;

  /// The type used for storing the VertexAttribute for each vertex in
  /// the graph.
  using VertexMapT = DenseMap<VertexIdentifier, VertexAttribute>;

  /// The type used for storing the edges entering a vertex. Indexed by
  /// the VertexIdentifier of the start of the edge. Only used to determine
  /// where the incoming edges are, the EdgeIdentifiers are stored in an
  /// InnerEdgeMapT.
  using NeighborSetT = DenseSet<VertexIdentifier>;

  /// The type storing the InnerInvGraphT corresponding to each vertex in
  /// the graph (When a vertex has an incoming edge incident to it)
  using NeighborLookupT = DenseMap<VertexIdentifier, NeighborSetT>;

private:
  /// Stores the map from the start and end vertex of an edge to it's
  /// EdgeAttribute
  EdgeMapT Edges;

  /// Stores the map from VertexIdentifier to VertexAttribute
  VertexMapT Vertices;

  /// Allows fast lookup for the incoming edge set of any given vertex.
  NeighborLookupT InNeighbors;

  /// Allows fast lookup for the outgoing edge set of any given vertex.
  NeighborLookupT OutNeighbors;

  /// An Iterator adapter using an InnerInvGraphT::iterator as a base iterator,
  /// and storing the VertexIdentifier the iterator range comes from. The
  /// dereference operator is then performed using a pointer to the graph's edge
  /// set.
  template <bool IsConst, bool IsOut,
            typename BaseIt = typename NeighborSetT::const_iterator,
            typename T = typename std::conditional<IsConst, const EdgeValueType,
                                                   EdgeValueType>::type>
  class NeighborEdgeIteratorT
      : public iterator_adaptor_base<
            NeighborEdgeIteratorT<IsConst, IsOut>, BaseIt,
            typename std::iterator_traits<BaseIt>::iterator_category, T> {
    using InternalEdgeMapT =
        typename std::conditional<IsConst, const EdgeMapT, EdgeMapT>::type;

    friend class NeighborEdgeIteratorT<false, IsOut, BaseIt, EdgeValueType>;
    friend class NeighborEdgeIteratorT<true, IsOut, BaseIt,
                                       const EdgeValueType>;

    InternalEdgeMapT *MP;
    VertexIdentifier SI;

  public:
    template <bool IsConstDest,
              typename = typename std::enable_if<IsConstDest && !IsConst>::type>
    operator NeighborEdgeIteratorT<IsConstDest, IsOut, BaseIt,
                                   const EdgeValueType>() const {
      return NeighborEdgeIteratorT<IsConstDest, IsOut, BaseIt,
                                   const EdgeValueType>(this->I, MP, SI);
    }

    NeighborEdgeIteratorT() = default;
    NeighborEdgeIteratorT(BaseIt _I, InternalEdgeMapT *_MP,
                          VertexIdentifier _SI)
        : iterator_adaptor_base<
              NeighborEdgeIteratorT<IsConst, IsOut>, BaseIt,
              typename std::iterator_traits<BaseIt>::iterator_category, T>(_I),
          MP(_MP), SI(_SI) {}

    T &operator*() const {
      if (!IsOut)
        return *(MP->find({*(this->I), SI}));
      else
        return *(MP->find({SI, *(this->I)}));
    }
  };

public:
  /// A const iterator type for iterating through the set of edges entering a
  /// vertex.
  ///
  /// Has a const EdgeValueType as its value_type
  using ConstInEdgeIterator = NeighborEdgeIteratorT<true, false>;

  /// An iterator type for iterating through the set of edges leaving a vertex.
  ///
  /// Has an EdgeValueType as its value_type
  using InEdgeIterator = NeighborEdgeIteratorT<false, false>;

  /// A const iterator type for iterating through the set of edges entering a
  /// vertex.
  ///
  /// Has a const EdgeValueType as its value_type
  using ConstOutEdgeIterator = NeighborEdgeIteratorT<true, true>;

  /// An iterator type for iterating through the set of edges leaving a vertex.
  ///
  /// Has an EdgeValueType as its value_type
  using OutEdgeIterator = NeighborEdgeIteratorT<false, true>;

  /// A class for ranging over the incoming edges incident to a vertex.
  ///
  /// Like all views in this class it provides methods to get the beginning and
  /// past the range iterators for the range, as well as methods to determine
  /// the number of elements in the range and whether the range is empty.
  template <bool isConst, bool isOut> class InOutEdgeView {
  public:
    using iterator = NeighborEdgeIteratorT<isConst, isOut>;
    using const_iterator = NeighborEdgeIteratorT<true, isOut>;
    using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;
    using InternalEdgeMapT =
        typename std::conditional<isConst, const EdgeMapT, EdgeMapT>::type;

  private:
    InternalEdgeMapT &M;
    const VertexIdentifier A;
    const NeighborLookupT &NL;

  public:
    iterator begin() {
      auto It = NL.find(A);
      if (It == NL.end())
        return iterator();
      return iterator(It->second.begin(), &M, A);
    }

    const_iterator cbegin() const {
      auto It = NL.find(A);
      if (It == NL.end())
        return const_iterator();
      return const_iterator(It->second.begin(), &M, A);
    }

    const_iterator begin() const { return cbegin(); }

    iterator end() {
      auto It = NL.find(A);
      if (It == NL.end())
        return iterator();
      return iterator(It->second.end(), &M, A);
    }
    const_iterator cend() const {
      auto It = NL.find(A);
      if (It == NL.end())
        return const_iterator();
      return const_iterator(It->second.end(), &M, A);
    }

    const_iterator end() const { return cend(); }

    size_type size() const {
      auto I = NL.find(A);
      if (I == NL.end())
        return 0;
      else
        return I->second.size();
    }

    bool empty() const { return NL.count(A) == 0; };

    InOutEdgeView(GraphT &G, VertexIdentifier A)
        : M(G.Edges), A(A), NL(isOut ? G.OutNeighbors : G.InNeighbors) {}
  };

  /// A const iterator type for iterating through the whole vertex set of the
  /// graph.
  ///
  /// Has a const VertexValueType as its value_type
  using ConstVertexIterator = typename VertexMapT::const_iterator;

  /// An iterator type for iterating through the whole vertex set of the graph.
  ///
  /// Has a VertexValueType as its value_type
  using VertexIterator = typename VertexMapT::iterator;

  /// A class for ranging over the vertices in the graph.
  ///
  /// Like all views in this class it provides methods to get the beginning and
  /// past the range iterators for the range, as well as methods to determine
  /// the number of elements in the range and whether the range is empty.
  template <bool isConst> class VertexView {
  public:
    using iterator = typename std::conditional<isConst, ConstVertexIterator,
                                               VertexIterator>::type;
    using const_iterator = ConstVertexIterator;
    using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;

  private:
    GraphT &G;

  public:
    iterator begin() { return G.Vertices.begin(); }
    iterator end() { return G.Vertices.end(); }
    const_iterator cbegin() const { return G.Vertices.cbegin(); }
    const_iterator cend() const { return G.Vertices.cend(); }
    const_iterator begin() const { return G.Vertices.begin(); }
    const_iterator end() const { return G.Vertices.end(); }
    size_type size() const { return G.Vertices.size(); }
    bool empty() const { return G.Vertices.empty(); }
    VertexView(GraphT &_G) : G(_G) {}
  };

  /// A const iterator for iterating through the entire edge set of the graph.
  ///
  /// Has a const EdgeValueType as its value_type
  using ConstEdgeIterator = typename EdgeMapT::const_iterator;

  /// An iterator for iterating through the entire edge set of the graph.
  ///
  /// Has an EdgeValueType as its value_type
  using EdgeIterator = typename EdgeMapT::iterator;

  /// A class for ranging over all the edges in the graph.
  ///
  /// Like all views in this class it provides methods to get the beginning and
  /// past the range iterators for the range, as well as methods to determine
  /// the number of elements in the range and whether the range is empty.
  template <bool isConst> class EdgeView {
  public:
    using iterator = typename std::conditional<isConst, ConstEdgeIterator,
                                               EdgeIterator>::type;
    using const_iterator = ConstEdgeIterator;
    using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;

  private:
    GraphT &G;

  public:
    iterator begin() { return G.Edges.begin(); }
    iterator end() { return G.Edges.end(); }
    const_iterator cbegin() const { return G.Edges.cbegin(); }
    const_iterator cend() const { return G.Edges.cend(); }
    const_iterator begin() const { return G.Edges.begin(); }
    const_iterator end() const { return G.Edges.end(); }
    size_type size() const { return G.Edges.size(); }
    bool empty() const { return G.Edges.empty(); }
    EdgeView(GraphT &_G) : G(_G) {}
  };

public:
  // TODO: implement constructor to enable Graph Initialisation.\
  // Something like:
  //   Graph<int, int, int> G(
  //   {1, 2, 3, 4, 5},
  //   {{1, 2}, {2, 3}, {3, 4}});

  /// Empty the Graph
  void clear() {
    Edges.clear();
    Vertices.clear();
    InNeighbors.clear();
    OutNeighbors.clear();
  }

  /// Returns a view object allowing iteration over the vertices of the graph.
  /// also allows access to the size of the vertex set.
  VertexView<false> vertices() { return VertexView<false>(*this); }

  VertexView<true> vertices() const { return VertexView<true>(*this); }

  /// Returns a view object allowing iteration over the edges of the graph.
  /// also allows access to the size of the edge set.
  EdgeView<false> edges() { return EdgeView<false>(*this); }

  EdgeView<true> edges() const { return EdgeView<true>(*this); }

  /// Returns a view object allowing iteration over the edges which start at
  /// a vertex I.
  InOutEdgeView<false, true> outEdges(const VertexIdentifier I) {
    return InOutEdgeView<false, true>(*this, I);
  }

  InOutEdgeView<true, true> outEdges(const VertexIdentifier I) const {
    return InOutEdgeView<true, true>(*this, I);
  }

  /// Returns a view object allowing iteration over the edges which point to
  /// a vertex I.
  InOutEdgeView<false, false> inEdges(const VertexIdentifier I) {
    return InOutEdgeView<false, false>(*this, I);
  }

  InOutEdgeView<true, false> inEdges(const VertexIdentifier I) const {
    return InOutEdgeView<true, false>(*this, I);
  }

  /// Looks up the vertex with identifier I, if it does not exist it default
  /// constructs it.
  VertexAttribute &operator[](const VertexIdentifier &I) {
    return Vertices.FindAndConstruct(I).second;
  }

  /// Looks up the edge with identifier I, if it does not exist it default
  /// constructs it, if it's endpoints do not exist it also default constructs
  /// them.
  EdgeAttribute &operator[](const EdgeIdentifier &I) {
    auto &P = Edges.FindAndConstruct(I);
    Vertices.FindAndConstruct(I.first);
    Vertices.FindAndConstruct(I.second);
    InNeighbors[I.second].insert(I.first);
    OutNeighbors[I.first].insert(I.second);
    return P.second;
  }

  /// Looks up a vertex with Identifier I, or an error if it does not exist.
  Expected<VertexAttribute &> at(const VertexIdentifier &I) {
    auto It = Vertices.find(I);
    if (It == Vertices.end())
      return make_error<StringError>(
          "Vertex Identifier Does Not Exist",
          std::make_error_code(std::errc::invalid_argument));
    return It->second;
  }

  Expected<const VertexAttribute &> at(const VertexIdentifier &I) const {
    auto It = Vertices.find(I);
    if (It == Vertices.end())
      return make_error<StringError>(
          "Vertex Identifier Does Not Exist",
          std::make_error_code(std::errc::invalid_argument));
    return It->second;
  }

  /// Looks up an edge with Identifier I, or an error if it does not exist.
  Expected<EdgeAttribute &> at(const EdgeIdentifier &I) {
    auto It = Edges.find(I);
    if (It == Edges.end())
      return make_error<StringError>(
          "Edge Identifier Does Not Exist",
          std::make_error_code(std::errc::invalid_argument));
    return It->second;
  }

  Expected<const EdgeAttribute &> at(const EdgeIdentifier &I) const {
    auto It = Edges.find(I);
    if (It == Edges.end())
      return make_error<StringError>(
          "Edge Identifier Does Not Exist",
          std::make_error_code(std::errc::invalid_argument));
    return It->second;
  }

  /// Looks for a vertex with identifier I, returns 1 if one exists, and
  /// 0 otherwise
  size_type count(const VertexIdentifier &I) const {
    return Vertices.count(I);
  }

  /// Looks for an edge with Identifier I, returns 1 if one exists and 0
  /// otherwise
  size_type count(const EdgeIdentifier &I) const { return Edges.count(I); }

  /// Inserts a vertex into the graph with Identifier Val.first, and
  /// Attribute Val.second.
  std::pair<VertexIterator, bool>
  insert(const std::pair<VertexIdentifier, VertexAttribute> &Val) {
    return Vertices.insert(Val);
  }

  std::pair<VertexIterator, bool>
  insert(std::pair<VertexIdentifier, VertexAttribute> &&Val) {
    return Vertices.insert(std::move(Val));
  }

  /// Inserts an edge into the graph with Identifier Val.first, and
  /// Attribute Val.second. If the key is already in the map, it returns false
  /// and doesn't update the value.
  std::pair<EdgeIterator, bool>
  insert(const std::pair<EdgeIdentifier, EdgeAttribute> &Val) {
    const auto &p = Edges.insert(Val);
    if (p.second) {
      const auto &EI = Val.first;
      Vertices.FindAndConstruct(EI.first);
      Vertices.FindAndConstruct(EI.second);
      InNeighbors[EI.second].insert(EI.first);
      OutNeighbors[EI.first].insert(EI.second);
    };

    return p;
  }

  /// Inserts an edge into the graph with Identifier Val.first, and
  /// Attribute Val.second. If the key is already in the map, it returns false
  /// and doesn't update the value.
  std::pair<EdgeIterator, bool>
  insert(std::pair<EdgeIdentifier, EdgeAttribute> &&Val) {
    auto EI = Val.first;
    const auto &p = Edges.insert(std::move(Val));
    if (p.second) {
      Vertices.FindAndConstruct(EI.first);
      Vertices.FindAndConstruct(EI.second);
      InNeighbors[EI.second].insert(EI.first);
      OutNeighbors[EI.first].insert(EI.second);
    };

    return p;
  }
};
}
}
#endif