reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file provides helpers for the implementation of
/// a TargetTransformInfo-conforming class.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H

#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"

namespace llvm {

/// Base class for use as a mix-in that aids implementing
/// a TargetTransformInfo-compatible class.
class TargetTransformInfoImplBase {
protected:
  typedef TargetTransformInfo TTI;

  const DataLayout &DL;

  explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}

public:
  // Provide value semantics. MSVC requires that we spell all of these out.
  TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
      : DL(Arg.DL) {}
  TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}

  const DataLayout &getDataLayout() const { return DL; }

  unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
    switch (Opcode) {
    default:
      // By default, just classify everything as 'basic'.
      return TTI::TCC_Basic;

    case Instruction::GetElementPtr:
      llvm_unreachable("Use getGEPCost for GEP operations!");

    case Instruction::BitCast:
      assert(OpTy && "Cast instructions must provide the operand type");
      if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
        // Identity and pointer-to-pointer casts are free.
        return TTI::TCC_Free;

      // Otherwise, the default basic cost is used.
      return TTI::TCC_Basic;

    case Instruction::FDiv:
    case Instruction::FRem:
    case Instruction::SDiv:
    case Instruction::SRem:
    case Instruction::UDiv:
    case Instruction::URem:
      return TTI::TCC_Expensive;

    case Instruction::IntToPtr: {
      // An inttoptr cast is free so long as the input is a legal integer type
      // which doesn't contain values outside the range of a pointer.
      unsigned OpSize = OpTy->getScalarSizeInBits();
      if (DL.isLegalInteger(OpSize) &&
          OpSize <= DL.getPointerTypeSizeInBits(Ty))
        return TTI::TCC_Free;

      // Otherwise it's not a no-op.
      return TTI::TCC_Basic;
    }
    case Instruction::PtrToInt: {
      // A ptrtoint cast is free so long as the result is large enough to store
      // the pointer, and a legal integer type.
      unsigned DestSize = Ty->getScalarSizeInBits();
      if (DL.isLegalInteger(DestSize) &&
          DestSize >= DL.getPointerTypeSizeInBits(OpTy))
        return TTI::TCC_Free;

      // Otherwise it's not a no-op.
      return TTI::TCC_Basic;
    }
    case Instruction::Trunc:
      // trunc to a native type is free (assuming the target has compare and
      // shift-right of the same width).
      if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty)))
        return TTI::TCC_Free;

      return TTI::TCC_Basic;
    }
  }

  int getGEPCost(Type *PointeeType, const Value *Ptr,
                 ArrayRef<const Value *> Operands) {
    // In the basic model, we just assume that all-constant GEPs will be folded
    // into their uses via addressing modes.
    for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
      if (!isa<Constant>(Operands[Idx]))
        return TTI::TCC_Basic;

    return TTI::TCC_Free;
  }

  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
                                            unsigned &JTSize) {
    JTSize = 0;
    return SI.getNumCases();
  }

  int getExtCost(const Instruction *I, const Value *Src) {
    return TTI::TCC_Basic;
  }

  unsigned getCallCost(FunctionType *FTy, int NumArgs, const User *U) {
    assert(FTy && "FunctionType must be provided to this routine.");

    // The target-independent implementation just measures the size of the
    // function by approximating that each argument will take on average one
    // instruction to prepare.

    if (NumArgs < 0)
      // Set the argument number to the number of explicit arguments in the
      // function.
      NumArgs = FTy->getNumParams();

    return TTI::TCC_Basic * (NumArgs + 1);
  }

  unsigned getInliningThresholdMultiplier() { return 1; }

  int getInlinerVectorBonusPercent() { return 150; }

  unsigned getMemcpyCost(const Instruction *I) {
    return TTI::TCC_Expensive;
  }

  bool hasBranchDivergence() { return false; }

  bool isSourceOfDivergence(const Value *V) { return false; }

  bool isAlwaysUniform(const Value *V) { return false; }

  unsigned getFlatAddressSpace () {
    return -1;
  }

  bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
                                  Intrinsic::ID IID) const {
    return false;
  }

  bool rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
                                        Value *OldV, Value *NewV) const {
    return false;
  }

  bool isLoweredToCall(const Function *F) {
    assert(F && "A concrete function must be provided to this routine.");

    // FIXME: These should almost certainly not be handled here, and instead
    // handled with the help of TLI or the target itself. This was largely
    // ported from existing analysis heuristics here so that such refactorings
    // can take place in the future.

    if (F->isIntrinsic())
      return false;

    if (F->hasLocalLinkage() || !F->hasName())
      return true;

    StringRef Name = F->getName();

    // These will all likely lower to a single selection DAG node.
    if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
        Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
        Name == "fmin" || Name == "fminf" || Name == "fminl" ||
        Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
        Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
        Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
      return false;

    // These are all likely to be optimized into something smaller.
    if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
        Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
        Name == "floorf" || Name == "ceil" || Name == "round" ||
        Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
        Name == "llabs")
      return false;

    return true;
  }

  bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
                                AssumptionCache &AC,
                                TargetLibraryInfo *LibInfo,
                                HardwareLoopInfo &HWLoopInfo) {
    return false;
  }

  void getUnrollingPreferences(Loop *, ScalarEvolution &,
                               TTI::UnrollingPreferences &) {}

  bool isLegalAddImmediate(int64_t Imm) { return false; }

  bool isLegalICmpImmediate(int64_t Imm) { return false; }

  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                             bool HasBaseReg, int64_t Scale,
                             unsigned AddrSpace, Instruction *I = nullptr) {
    // Guess that only reg and reg+reg addressing is allowed. This heuristic is
    // taken from the implementation of LSR.
    return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
  }

  bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2) {
    return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
                    C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
           std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
                    C2.ScaleCost, C2.ImmCost, C2.SetupCost);
  }

  bool canMacroFuseCmp() { return false; }

  bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
                  DominatorTree *DT, AssumptionCache *AC,
                  TargetLibraryInfo *LibInfo) {
    return false;
  }

  bool shouldFavorPostInc() const { return false; }

  bool shouldFavorBackedgeIndex(const Loop *L) const { return false; }

  bool isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) { return false; }

  bool isLegalMaskedLoad(Type *DataType, MaybeAlign Alignment) { return false; }

  bool isLegalNTStore(Type *DataType, Align Alignment) {
    // By default, assume nontemporal memory stores are available for stores
    // that are aligned and have a size that is a power of 2.
    unsigned DataSize = DL.getTypeStoreSize(DataType);
    return Alignment >= DataSize && isPowerOf2_32(DataSize);
  }

  bool isLegalNTLoad(Type *DataType, Align Alignment) {
    // By default, assume nontemporal memory loads are available for loads that
    // are aligned and have a size that is a power of 2.
    unsigned DataSize = DL.getTypeStoreSize(DataType);
    return Alignment >= DataSize && isPowerOf2_32(DataSize);
  }

  bool isLegalMaskedScatter(Type *DataType) { return false; }

  bool isLegalMaskedGather(Type *DataType) { return false; }

  bool isLegalMaskedCompressStore(Type *DataType) { return false; }

  bool isLegalMaskedExpandLoad(Type *DataType) { return false; }

  bool hasDivRemOp(Type *DataType, bool IsSigned) { return false; }

  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) { return false; }

  bool prefersVectorizedAddressing() { return true; }

  int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                           bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
    // Guess that all legal addressing mode are free.
    if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
                              Scale, AddrSpace))
      return 0;
    return -1;
  }

  bool LSRWithInstrQueries() { return false; }

  bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }

  bool isProfitableToHoist(Instruction *I) { return true; }

  bool useAA() { return false; }

  bool isTypeLegal(Type *Ty) { return false; }

  bool shouldBuildLookupTables() { return true; }
  bool shouldBuildLookupTablesForConstant(Constant *C) { return true; }

  bool useColdCCForColdCall(Function &F) { return false; }

  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
    return 0;
  }

  unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
                                            unsigned VF) { return 0; }

  bool supportsEfficientVectorElementLoadStore() { return false; }

  bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }

  TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
                                                    bool IsZeroCmp) const {
    return {};
  }

  bool enableInterleavedAccessVectorization() { return false; }

  bool enableMaskedInterleavedAccessVectorization() { return false; }

  bool isFPVectorizationPotentiallyUnsafe() { return false; }

  bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
                                      unsigned BitWidth,
                                      unsigned AddressSpace,
                                      unsigned Alignment,
                                      bool *Fast) { return false; }

  TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
    return TTI::PSK_Software;
  }

  bool haveFastSqrt(Type *Ty) { return false; }

  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { return true; }

  unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; }

  int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
                            Type *Ty) {
    return 0;
  }

  unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }

  unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
                         Type *Ty) {
    return TTI::TCC_Free;
  }

  unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
                         Type *Ty) {
    return TTI::TCC_Free;
  }

  unsigned getNumberOfRegisters(unsigned ClassID) const { return 8; }

  unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const {
    return Vector ? 1 : 0;
  };

  const char* getRegisterClassName(unsigned ClassID) const {
    switch (ClassID) {
      default:
        return "Generic::Unknown Register Class";
      case 0: return "Generic::ScalarRC";
      case 1: return "Generic::VectorRC";
    }
  }

  unsigned getRegisterBitWidth(bool Vector) const { return 32; }

  unsigned getMinVectorRegisterBitWidth() { return 128; }

  bool shouldMaximizeVectorBandwidth(bool OptSize) const { return false; }

  unsigned getMinimumVF(unsigned ElemWidth) const { return 0; }

  bool
  shouldConsiderAddressTypePromotion(const Instruction &I,
                                     bool &AllowPromotionWithoutCommonHeader) {
    AllowPromotionWithoutCommonHeader = false;
    return false;
  }

  unsigned getCacheLineSize() const { return 0; }

  llvm::Optional<unsigned> getCacheSize(TargetTransformInfo::CacheLevel Level) const {
    switch (Level) {
    case TargetTransformInfo::CacheLevel::L1D:
      LLVM_FALLTHROUGH;
    case TargetTransformInfo::CacheLevel::L2D:
      return llvm::Optional<unsigned>();
    }
    llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
  }

  llvm::Optional<unsigned> getCacheAssociativity(
    TargetTransformInfo::CacheLevel Level) const {
    switch (Level) {
    case TargetTransformInfo::CacheLevel::L1D:
      LLVM_FALLTHROUGH;
    case TargetTransformInfo::CacheLevel::L2D:
      return llvm::Optional<unsigned>();
    }

    llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
  }

  unsigned getPrefetchDistance() const { return 0; }
  unsigned getMinPrefetchStride() const { return 1; }
  unsigned getMaxPrefetchIterationsAhead() const { return UINT_MAX; }

  unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }

  unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
                                  TTI::OperandValueKind Opd1Info,
                                  TTI::OperandValueKind Opd2Info,
                                  TTI::OperandValueProperties Opd1PropInfo,
                                  TTI::OperandValueProperties Opd2PropInfo,
                                  ArrayRef<const Value *> Args) {
    return 1;
  }

  unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index,
                          Type *SubTp) {
    return 1;
  }

  unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                            const Instruction *I) { return 1; }

  unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
                                    VectorType *VecTy, unsigned Index) {
    return 1;
  }

  unsigned getCFInstrCost(unsigned Opcode) { return 1; }

  unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
                              const Instruction *I) {
    return 1;
  }

  unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
    return 1;
  }

  unsigned getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
                           unsigned AddressSpace, const Instruction *I) {
    return 1;
  }

  unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
                                 unsigned AddressSpace) {
    return 1;
  }

  unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
                                  bool VariableMask,
                                  unsigned Alignment) {
    return 1;
  }

  unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
                                      unsigned Factor,
                                      ArrayRef<unsigned> Indices,
                                      unsigned Alignment, unsigned AddressSpace,
                                      bool UseMaskForCond = false,
                                      bool UseMaskForGaps = false) {
    return 1;
  }

  unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
                                 ArrayRef<Type *> Tys, FastMathFlags FMF,
                                 unsigned ScalarizationCostPassed) {
    return 1;
  }
  unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
            ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
    return 1;
  }

  unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
    return 1;
  }

  unsigned getNumberOfParts(Type *Tp) { return 0; }

  unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *,
                                     const SCEV *) {
    return 0;
  }

  unsigned getArithmeticReductionCost(unsigned, Type *, bool) { return 1; }

  unsigned getMinMaxReductionCost(Type *, Type *, bool, bool) { return 1; }

  unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }

  bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) {
    return false;
  }

  unsigned getAtomicMemIntrinsicMaxElementSize() const {
    // Note for overrides: You must ensure for all element unordered-atomic
    // memory intrinsics that all power-of-2 element sizes up to, and
    // including, the return value of this method have a corresponding
    // runtime lib call. These runtime lib call definitions can be found
    // in RuntimeLibcalls.h
    return 0;
  }

  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
                                           Type *ExpectedType) {
    return nullptr;
  }

  Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
                                  unsigned SrcAlign, unsigned DestAlign) const {
    return Type::getInt8Ty(Context);
  }

  void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
                                         LLVMContext &Context,
                                         unsigned RemainingBytes,
                                         unsigned SrcAlign,
                                         unsigned DestAlign) const {
    for (unsigned i = 0; i != RemainingBytes; ++i)
      OpsOut.push_back(Type::getInt8Ty(Context));
  }

  bool areInlineCompatible(const Function *Caller,
                           const Function *Callee) const {
    return (Caller->getFnAttribute("target-cpu") ==
            Callee->getFnAttribute("target-cpu")) &&
           (Caller->getFnAttribute("target-features") ==
            Callee->getFnAttribute("target-features"));
  }

  bool areFunctionArgsABICompatible(const Function *Caller, const Function *Callee,
                                    SmallPtrSetImpl<Argument *> &Args) const {
    return (Caller->getFnAttribute("target-cpu") ==
            Callee->getFnAttribute("target-cpu")) &&
           (Caller->getFnAttribute("target-features") ==
            Callee->getFnAttribute("target-features"));
  }

  bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty,
                          const DataLayout &DL) const {
    return false;
  }

  bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty,
                           const DataLayout &DL) const {
    return false;
  }

  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }

  bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }

  bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }

  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
                                   unsigned Alignment,
                                   unsigned AddrSpace) const {
    return true;
  }

  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
                                    unsigned Alignment,
                                    unsigned AddrSpace) const {
    return true;
  }

  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
                               unsigned ChainSizeInBytes,
                               VectorType *VecTy) const {
    return VF;
  }

  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
                                unsigned ChainSizeInBytes,
                                VectorType *VecTy) const {
    return VF;
  }

  bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
                             TTI::ReductionFlags Flags) const {
    return false;
  }

  bool shouldExpandReduction(const IntrinsicInst *II) const {
    return true;
  }

  unsigned getGISelRematGlobalCost() const {
    return 1;
  }

protected:
  // Obtain the minimum required size to hold the value (without the sign)
  // In case of a vector it returns the min required size for one element.
  unsigned minRequiredElementSize(const Value* Val, bool &isSigned) {
    if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
      const auto* VectorValue = cast<Constant>(Val);

      // In case of a vector need to pick the max between the min
      // required size for each element
      auto *VT = cast<VectorType>(Val->getType());

      // Assume unsigned elements
      isSigned = false;

      // The max required size is the total vector width divided by num
      // of elements in the vector
      unsigned MaxRequiredSize = VT->getBitWidth() / VT->getNumElements();

      unsigned MinRequiredSize = 0;
      for(unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
        if (auto* IntElement =
              dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
          bool signedElement = IntElement->getValue().isNegative();
          // Get the element min required size.
          unsigned ElementMinRequiredSize =
            IntElement->getValue().getMinSignedBits() - 1;
          // In case one element is signed then all the vector is signed.
          isSigned |= signedElement;
          // Save the max required bit size between all the elements.
          MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
        }
        else {
          // not an int constant element
          return MaxRequiredSize;
        }
      }
      return MinRequiredSize;
    }

    if (const auto* CI = dyn_cast<ConstantInt>(Val)) {
      isSigned = CI->getValue().isNegative();
      return CI->getValue().getMinSignedBits() - 1;
    }

    if (const auto* Cast = dyn_cast<SExtInst>(Val)) {
      isSigned = true;
      return Cast->getSrcTy()->getScalarSizeInBits() - 1;
    }

    if (const auto* Cast = dyn_cast<ZExtInst>(Val)) {
      isSigned = false;
      return Cast->getSrcTy()->getScalarSizeInBits();
    }

    isSigned = false;
    return Val->getType()->getScalarSizeInBits();
  }

  bool isStridedAccess(const SCEV *Ptr) {
    return Ptr && isa<SCEVAddRecExpr>(Ptr);
  }

  const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE,
                                            const SCEV *Ptr) {
    if (!isStridedAccess(Ptr))
      return nullptr;
    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
    return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
  }

  bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr,
                                       int64_t MergeDistance) {
    const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
    if (!Step)
      return false;
    APInt StrideVal = Step->getAPInt();
    if (StrideVal.getBitWidth() > 64)
      return false;
    // FIXME: Need to take absolute value for negative stride case.
    return StrideVal.getSExtValue() < MergeDistance;
  }
};

/// CRTP base class for use as a mix-in that aids implementing
/// a TargetTransformInfo-compatible class.
template <typename T>
class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
private:
  typedef TargetTransformInfoImplBase BaseT;

protected:
  explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}

public:
  using BaseT::getCallCost;

  unsigned getCallCost(const Function *F, int NumArgs, const User *U) {
    assert(F && "A concrete function must be provided to this routine.");

    if (NumArgs < 0)
      // Set the argument number to the number of explicit arguments in the
      // function.
      NumArgs = F->arg_size();

    if (Intrinsic::ID IID = F->getIntrinsicID()) {
      FunctionType *FTy = F->getFunctionType();
      SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
      return static_cast<T *>(this)
          ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys, U);
    }

    if (!static_cast<T *>(this)->isLoweredToCall(F))
      return TTI::TCC_Basic; // Give a basic cost if it will be lowered
                             // directly.

    return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs, U);
  }

  unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments,
                       const User *U) {
    // Simply delegate to generic handling of the call.
    // FIXME: We should use instsimplify or something else to catch calls which
    // will constant fold with these arguments.
    return static_cast<T *>(this)->getCallCost(F, Arguments.size(), U);
  }

  using BaseT::getGEPCost;

  int getGEPCost(Type *PointeeType, const Value *Ptr,
                 ArrayRef<const Value *> Operands) {
    assert(PointeeType && Ptr && "can't get GEPCost of nullptr");
    // TODO: will remove this when pointers have an opaque type.
    assert(Ptr->getType()->getScalarType()->getPointerElementType() ==
               PointeeType &&
           "explicit pointee type doesn't match operand's pointee type");
    auto *BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
    bool HasBaseReg = (BaseGV == nullptr);

    auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
    APInt BaseOffset(PtrSizeBits, 0);
    int64_t Scale = 0;

    auto GTI = gep_type_begin(PointeeType, Operands);
    Type *TargetType = nullptr;

    // Handle the case where the GEP instruction has a single operand,
    // the basis, therefore TargetType is a nullptr.
    if (Operands.empty())
      return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;

    for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
      TargetType = GTI.getIndexedType();
      // We assume that the cost of Scalar GEP with constant index and the
      // cost of Vector GEP with splat constant index are the same.
      const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
      if (!ConstIdx)
        if (auto Splat = getSplatValue(*I))
          ConstIdx = dyn_cast<ConstantInt>(Splat);
      if (StructType *STy = GTI.getStructTypeOrNull()) {
        // For structures the index is always splat or scalar constant
        assert(ConstIdx && "Unexpected GEP index");
        uint64_t Field = ConstIdx->getZExtValue();
        BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
      } else {
        int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType());
        if (ConstIdx) {
          BaseOffset +=
              ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
        } else {
          // Needs scale register.
          if (Scale != 0)
            // No addressing mode takes two scale registers.
            return TTI::TCC_Basic;
          Scale = ElementSize;
        }
      }
    }

    if (static_cast<T *>(this)->isLegalAddressingMode(
            TargetType, const_cast<GlobalValue *>(BaseGV),
            BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale,
            Ptr->getType()->getPointerAddressSpace()))
      return TTI::TCC_Free;
    return TTI::TCC_Basic;
  }

  unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                            ArrayRef<Type *> ParamTys, const User *U) {
    switch (IID) {
    default:
      // Intrinsics rarely (if ever) have normal argument setup constraints.
      // Model them as having a basic instruction cost.
      return TTI::TCC_Basic;

    // TODO: other libc intrinsics.
    case Intrinsic::memcpy:
      return static_cast<T *>(this)->getMemcpyCost(dyn_cast<Instruction>(U));

    case Intrinsic::annotation:
    case Intrinsic::assume:
    case Intrinsic::sideeffect:
    case Intrinsic::dbg_declare:
    case Intrinsic::dbg_value:
    case Intrinsic::dbg_label:
    case Intrinsic::invariant_start:
    case Intrinsic::invariant_end:
    case Intrinsic::launder_invariant_group:
    case Intrinsic::strip_invariant_group:
    case Intrinsic::is_constant:
    case Intrinsic::lifetime_start:
    case Intrinsic::lifetime_end:
    case Intrinsic::objectsize:
    case Intrinsic::ptr_annotation:
    case Intrinsic::var_annotation:
    case Intrinsic::experimental_gc_result:
    case Intrinsic::experimental_gc_relocate:
    case Intrinsic::coro_alloc:
    case Intrinsic::coro_begin:
    case Intrinsic::coro_free:
    case Intrinsic::coro_end:
    case Intrinsic::coro_frame:
    case Intrinsic::coro_size:
    case Intrinsic::coro_suspend:
    case Intrinsic::coro_param:
    case Intrinsic::coro_subfn_addr:
      // These intrinsics don't actually represent code after lowering.
      return TTI::TCC_Free;
    }
  }

  unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
                            ArrayRef<const Value *> Arguments, const User *U) {
    // Delegate to the generic intrinsic handling code. This mostly provides an
    // opportunity for targets to (for example) special case the cost of
    // certain intrinsics based on constants used as arguments.
    SmallVector<Type *, 8> ParamTys;
    ParamTys.reserve(Arguments.size());
    for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
      ParamTys.push_back(Arguments[Idx]->getType());
    return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys, U);
  }

  unsigned getUserCost(const User *U, ArrayRef<const Value *> Operands) {
    if (isa<PHINode>(U))
      return TTI::TCC_Free; // Model all PHI nodes as free.

    if (isa<ExtractValueInst>(U))
      return TTI::TCC_Free; // Model all ExtractValue nodes as free.

    // Static alloca doesn't generate target instructions.
    if (auto *A = dyn_cast<AllocaInst>(U))
      if (A->isStaticAlloca())
        return TTI::TCC_Free;

    if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
      return static_cast<T *>(this)->getGEPCost(GEP->getSourceElementType(),
                                                GEP->getPointerOperand(),
                                                Operands.drop_front());
    }

    if (auto CS = ImmutableCallSite(U)) {
      const Function *F = CS.getCalledFunction();
      if (!F) {
        // Just use the called value type.
        Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
        return static_cast<T *>(this)
            ->getCallCost(cast<FunctionType>(FTy), CS.arg_size(), U);
      }

      SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
      return static_cast<T *>(this)->getCallCost(F, Arguments, U);
    }

    if (isa<SExtInst>(U) || isa<ZExtInst>(U) || isa<FPExtInst>(U))
      // The old behaviour of generally treating extensions of icmp to be free
      // has been removed. A target that needs it should override getUserCost().
      return static_cast<T *>(this)->getExtCost(cast<Instruction>(U),
                                                Operands.back());

    return static_cast<T *>(this)->getOperationCost(
        Operator::getOpcode(U), U->getType(),
        U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
  }

  int getInstructionLatency(const Instruction *I) {
    SmallVector<const Value *, 4> Operands(I->value_op_begin(),
                                           I->value_op_end());
    if (getUserCost(I, Operands) == TTI::TCC_Free)
      return 0;

    if (isa<LoadInst>(I))
      return 4;

    Type *DstTy = I->getType();

    // Usually an intrinsic is a simple instruction.
    // A real function call is much slower.
    if (auto *CI = dyn_cast<CallInst>(I)) {
      const Function *F = CI->getCalledFunction();
      if (!F || static_cast<T *>(this)->isLoweredToCall(F))
        return 40;
      // Some intrinsics return a value and a flag, we use the value type
      // to decide its latency.
      if (StructType* StructTy = dyn_cast<StructType>(DstTy))
        DstTy = StructTy->getElementType(0);
      // Fall through to simple instructions.
    }

    if (VectorType *VectorTy = dyn_cast<VectorType>(DstTy))
      DstTy = VectorTy->getElementType();
    if (DstTy->isFloatingPointTy())
      return 3;

    return 1;
  }
};
}

#endif