reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
//===- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H

#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <vector>

class PrototypeAST;
class ExprAST;

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
  std::unique_ptr<PrototypeAST> Proto;
  std::unique_ptr<ExprAST> Body;

public:
  FunctionAST(std::unique_ptr<PrototypeAST> Proto,
              std::unique_ptr<ExprAST> Body)
      : Proto(std::move(Proto)), Body(std::move(Body)) {}

  const PrototypeAST& getProto() const;
  const std::string& getName() const;
  llvm::Function *codegen();
};

/// This will compile FnAST to IR, rename the function to add the given
/// suffix (needed to prevent a name-clash with the function's stub),
/// and then take ownership of the module that the function was compiled
/// into.
std::unique_ptr<llvm::Module>
irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix);

namespace llvm {
namespace orc {

class KaleidoscopeJIT {
private:
  ExecutionSession ES;
  std::shared_ptr<SymbolResolver> Resolver;
  std::unique_ptr<TargetMachine> TM;
  const DataLayout DL;
  LegacyRTDyldObjectLinkingLayer ObjectLayer;
  LegacyIRCompileLayer<decltype(ObjectLayer), SimpleCompiler> CompileLayer;

  using OptimizeFunction =
      std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>;

  LegacyIRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;

  std::unique_ptr<JITCompileCallbackManager> CompileCallbackMgr;
  std::unique_ptr<IndirectStubsManager> IndirectStubsMgr;

public:
  KaleidoscopeJIT()
      : Resolver(createLegacyLookupResolver(
            ES,
            [this](const std::string &Name) -> JITSymbol {
              if (auto Sym = IndirectStubsMgr->findStub(Name, false))
                return Sym;
              if (auto Sym = OptimizeLayer.findSymbol(Name, false))
                return Sym;
              else if (auto Err = Sym.takeError())
                return std::move(Err);
              if (auto SymAddr =
                      RTDyldMemoryManager::getSymbolAddressInProcess(Name))
                return JITSymbol(SymAddr, JITSymbolFlags::Exported);
              return nullptr;
            },
            [](Error Err) { cantFail(std::move(Err), "lookupFlags failed"); })),
        TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),
        ObjectLayer(AcknowledgeORCv1Deprecation, ES,
                    [this](VModuleKey K) {
                      return LegacyRTDyldObjectLinkingLayer::Resources{
                          std::make_shared<SectionMemoryManager>(), Resolver};
                    }),
        CompileLayer(AcknowledgeORCv1Deprecation, ObjectLayer,
                     SimpleCompiler(*TM)),
        OptimizeLayer(AcknowledgeORCv1Deprecation, CompileLayer,
                      [this](std::unique_ptr<Module> M) {
                        return optimizeModule(std::move(M));
                      }),
        CompileCallbackMgr(cantFail(orc::createLocalCompileCallbackManager(
            TM->getTargetTriple(), ES, 0))) {
    auto IndirectStubsMgrBuilder =
      orc::createLocalIndirectStubsManagerBuilder(TM->getTargetTriple());
    IndirectStubsMgr = IndirectStubsMgrBuilder();
    llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
  }

  TargetMachine &getTargetMachine() { return *TM; }

  VModuleKey addModule(std::unique_ptr<Module> M) {
    // Add the module to the JIT with a new VModuleKey.
    auto K = ES.allocateVModule();
    cantFail(OptimizeLayer.addModule(K, std::move(M)));
    return K;
  }

  Error addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
    // Move ownership of FnAST to a shared pointer - C++11 lambdas don't support
    // capture-by-move, which is be required for unique_ptr.
    auto SharedFnAST = std::shared_ptr<FunctionAST>(std::move(FnAST));

    // Set the action to compile our AST. This lambda will be run if/when
    // execution hits the compile callback (via the stub).
    //
    // The steps to compile are:
    // (1) IRGen the function.
    // (2) Add the IR module to the JIT to make it executable like any other
    //     module.
    // (3) Use findSymbol to get the address of the compiled function.
    // (4) Update the stub pointer to point at the implementation so that
    ///    subsequent calls go directly to it and bypass the compiler.
    // (5) Return the address of the implementation: this lambda will actually
    //     be run inside an attempted call to the function, and we need to
    //     continue on to the implementation to complete the attempted call.
    //     The JIT runtime (the resolver block) will use the return address of
    //     this function as the address to continue at once it has reset the
    //     CPU state to what it was immediately before the call.
    auto CompileAction = [this, SharedFnAST]() {
      auto M = irgenAndTakeOwnership(*SharedFnAST, "$impl");
      addModule(std::move(M));
      auto Sym = findSymbol(SharedFnAST->getName() + "$impl");
      assert(Sym && "Couldn't find compiled function?");
      JITTargetAddress SymAddr = cantFail(Sym.getAddress());
      if (auto Err = IndirectStubsMgr->updatePointer(
              mangle(SharedFnAST->getName()), SymAddr)) {
        logAllUnhandledErrors(std::move(Err), errs(),
                              "Error updating function pointer: ");
        exit(1);
      }

      return SymAddr;
    };

    // Create a CompileCallback using the CompileAction - this is the re-entry
    // point into the compiler for functions that haven't been compiled yet.
    auto CCAddr = cantFail(
        CompileCallbackMgr->getCompileCallback(std::move(CompileAction)));

    // Create an indirect stub. This serves as the functions "canonical
    // definition" - an unchanging (constant address) entry point to the
    // function implementation.
    // Initially we point the stub's function-pointer at the compile callback
    // that we just created. When the compile action for the callback is run we
    // will update the stub's function pointer to point at the function
    // implementation that we just implemented.
    if (auto Err = IndirectStubsMgr->createStub(
            mangle(SharedFnAST->getName()), CCAddr, JITSymbolFlags::Exported))
      return Err;

    return Error::success();
  }

  JITSymbol findSymbol(const std::string Name) {
    return OptimizeLayer.findSymbol(mangle(Name), true);
  }

  void removeModule(VModuleKey K) {
    cantFail(OptimizeLayer.removeModule(K));
  }

private:
  std::string mangle(const std::string &Name) {
    std::string MangledName;
    raw_string_ostream MangledNameStream(MangledName);
    Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
    return MangledNameStream.str();
  }

  std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
    // Create a function pass manager.
    auto FPM = std::make_unique<legacy::FunctionPassManager>(M.get());

    // Add some optimizations.
    FPM->add(createInstructionCombiningPass());
    FPM->add(createReassociatePass());
    FPM->add(createGVNPass());
    FPM->add(createCFGSimplificationPass());
    FPM->doInitialization();

    // Run the optimizations over all functions in the module being added to
    // the JIT.
    for (auto &F : *M)
      FPM->run(F);

    return M;
  }
};

} // end namespace orc
} // end namespace llvm

#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H