reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
=====================================
Coroutines in LLVM
=====================================

.. contents::
   :local:
   :depth: 3

.. warning::
  This is a work in progress. Compatibility across LLVM releases is not 
  guaranteed.

Introduction
============

.. _coroutine handle:

LLVM coroutines are functions that have one or more `suspend points`_. 
When a suspend point is reached, the execution of a coroutine is suspended and
control is returned back to its caller. A suspended coroutine can be resumed 
to continue execution from the last suspend point or it can be destroyed. 

In the following example, we call function `f` (which may or may not be a 
coroutine itself) that returns a handle to a suspended coroutine 
(**coroutine handle**) that is used by `main` to resume the coroutine twice and
then destroy it:

.. code-block:: llvm

  define i32 @main() {
  entry:
    %hdl = call i8* @f(i32 4)
    call void @llvm.coro.resume(i8* %hdl)
    call void @llvm.coro.resume(i8* %hdl)
    call void @llvm.coro.destroy(i8* %hdl)
    ret i32 0
  }

.. _coroutine frame:

In addition to the function stack frame which exists when a coroutine is 
executing, there is an additional region of storage that contains objects that 
keep the coroutine state when a coroutine is suspended. This region of storage
is called **coroutine frame**. It is created when a coroutine is called and 
destroyed when a coroutine runs to completion or destroyed by a call to 
the `coro.destroy`_ intrinsic. 

An LLVM coroutine is represented as an LLVM function that has calls to
`coroutine intrinsics`_ defining the structure of the coroutine.
After lowering, a coroutine is split into several
functions that represent three different ways of how control can enter the 
coroutine: 

1. a ramp function, which represents an initial invocation of the coroutine that
   creates the coroutine frame and executes the coroutine code until it 
   encounters a suspend point or reaches the end of the function;

2. a coroutine resume function that is invoked when the coroutine is resumed;

3. a coroutine destroy function that is invoked when the coroutine is destroyed.

.. note:: Splitting out resume and destroy functions are just one of the 
   possible ways of lowering the coroutine. We chose it for initial 
   implementation as it matches closely the mental model and results in 
   reasonably nice code.

Coroutines by Example
=====================

Coroutine Representation
------------------------

Let's look at an example of an LLVM coroutine with the behavior sketched
by the following pseudo-code.

.. code-block:: c++

  void *f(int n) {
     for(;;) {
       print(n++);
       <suspend> // returns a coroutine handle on first suspend
     }     
  } 

This coroutine calls some function `print` with value `n` as an argument and
suspends execution. Every time this coroutine resumes, it calls `print` again with an argument one bigger than the last time. This coroutine never completes by itself and must be destroyed explicitly. If we use this coroutine with 
a `main` shown in the previous section. It will call `print` with values 4, 5 
and 6 after which the coroutine will be destroyed.

The LLVM IR for this coroutine looks like this:

.. code-block:: llvm

  define i8* @f(i32 %n) {
  entry:
    %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
    %size = call i32 @llvm.coro.size.i32()
    %alloc = call i8* @malloc(i32 %size)
    %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc)
    br label %loop
  loop:
    %n.val = phi i32 [ %n, %entry ], [ %inc, %loop ]
    %inc = add nsw i32 %n.val, 1
    call void @print(i32 %n.val)
    %0 = call i8 @llvm.coro.suspend(token none, i1 false)
    switch i8 %0, label %suspend [i8 0, label %loop
                                  i8 1, label %cleanup]
  cleanup:
    %mem = call i8* @llvm.coro.free(token %id, i8* %hdl)
    call void @free(i8* %mem)
    br label %suspend
  suspend:
    %unused = call i1 @llvm.coro.end(i8* %hdl, i1 false)
    ret i8* %hdl
  }

The `entry` block establishes the coroutine frame. The `coro.size`_ intrinsic is
lowered to a constant representing the size required for the coroutine frame. 
The `coro.begin`_ intrinsic initializes the coroutine frame and returns the 
coroutine handle. The second parameter of `coro.begin` is given a block of memory 
to be used if the coroutine frame needs to be allocated dynamically.
The `coro.id`_ intrinsic serves as coroutine identity useful in cases when the
`coro.begin`_ intrinsic get duplicated by optimization passes such as 
jump-threading.

The `cleanup` block destroys the coroutine frame. The `coro.free`_ intrinsic, 
given the coroutine handle, returns a pointer of the memory block to be freed or
`null` if the coroutine frame was not allocated dynamically. The `cleanup` 
block is entered when coroutine runs to completion by itself or destroyed via
call to the `coro.destroy`_ intrinsic.

The `suspend` block contains code to be executed when coroutine runs to 
completion or suspended. The `coro.end`_ intrinsic marks the point where 
a coroutine needs to return control back to the caller if it is not an initial 
invocation of the coroutine. 

The `loop` blocks represents the body of the coroutine. The `coro.suspend`_ 
intrinsic in combination with the following switch indicates what happens to 
control flow when a coroutine is suspended (default case), resumed (case 0) or 
destroyed (case 1).

Coroutine Transformation
------------------------

One of the steps of coroutine lowering is building the coroutine frame. The
def-use chains are analyzed to determine which objects need be kept alive across
suspend points. In the coroutine shown in the previous section, use of virtual register 
`%n.val` is separated from the definition by a suspend point, therefore, it 
cannot reside on the stack frame since the latter goes away once the coroutine 
is suspended and control is returned back to the caller. An i32 slot is 
allocated in the coroutine frame and `%n.val` is spilled and reloaded from that
slot as needed.

We also store addresses of the resume and destroy functions so that the 
`coro.resume` and `coro.destroy` intrinsics can resume and destroy the coroutine
when its identity cannot be determined statically at compile time. For our 
example, the coroutine frame will be:

.. code-block:: llvm

  %f.frame = type { void (%f.frame*)*, void (%f.frame*)*, i32 }

After resume and destroy parts are outlined, function `f` will contain only the 
code responsible for creation and initialization of the coroutine frame and 
execution of the coroutine until a suspend point is reached:

.. code-block:: llvm

  define i8* @f(i32 %n) {
  entry:
    %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
    %alloc = call noalias i8* @malloc(i32 24)
    %0 = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc)
    %frame = bitcast i8* %0 to %f.frame*
    %1 = getelementptr %f.frame, %f.frame* %frame, i32 0, i32 0
    store void (%f.frame*)* @f.resume, void (%f.frame*)** %1
    %2 = getelementptr %f.frame, %f.frame* %frame, i32 0, i32 1
    store void (%f.frame*)* @f.destroy, void (%f.frame*)** %2
   
    %inc = add nsw i32 %n, 1
    %inc.spill.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i32 0, i32 2
    store i32 %inc, i32* %inc.spill.addr
    call void @print(i32 %n)
   
    ret i8* %frame
  }

Outlined resume part of the coroutine will reside in function `f.resume`:

.. code-block:: llvm

  define internal fastcc void @f.resume(%f.frame* %frame.ptr.resume) {
  entry:
    %inc.spill.addr = getelementptr %f.frame, %f.frame* %frame.ptr.resume, i64 0, i32 2
    %inc.spill = load i32, i32* %inc.spill.addr, align 4
    %inc = add i32 %n.val, 1
    store i32 %inc, i32* %inc.spill.addr, align 4
    tail call void @print(i32 %inc)
    ret void
  }

Whereas function `f.destroy` will contain the cleanup code for the coroutine:

.. code-block:: llvm

  define internal fastcc void @f.destroy(%f.frame* %frame.ptr.destroy) {
  entry:
    %0 = bitcast %f.frame* %frame.ptr.destroy to i8*
    tail call void @free(i8* %0)
    ret void
  }

Avoiding Heap Allocations
-------------------------
 
A particular coroutine usage pattern, which is illustrated by the `main` 
function in the overview section, where a coroutine is created, manipulated and 
destroyed by the same calling function, is common for coroutines implementing
RAII idiom and is suitable for allocation elision optimization which avoid 
dynamic allocation by storing the coroutine frame as a static `alloca` in its 
caller.

In the entry block, we will call `coro.alloc`_ intrinsic that will return `true`
when dynamic allocation is required, and `false` if dynamic allocation is 
elided.

.. code-block:: llvm

  entry:
    %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
    %need.dyn.alloc = call i1 @llvm.coro.alloc(token %id)
    br i1 %need.dyn.alloc, label %dyn.alloc, label %coro.begin
  dyn.alloc:
    %size = call i32 @llvm.coro.size.i32()
    %alloc = call i8* @CustomAlloc(i32 %size)
    br label %coro.begin
  coro.begin:
    %phi = phi i8* [ null, %entry ], [ %alloc, %dyn.alloc ]
    %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %phi)

In the cleanup block, we will make freeing the coroutine frame conditional on
`coro.free`_ intrinsic. If allocation is elided, `coro.free`_ returns `null`
thus skipping the deallocation code:

.. code-block:: llvm

  cleanup:
    %mem = call i8* @llvm.coro.free(token %id, i8* %hdl)
    %need.dyn.free = icmp ne i8* %mem, null
    br i1 %need.dyn.free, label %dyn.free, label %if.end
  dyn.free:
    call void @CustomFree(i8* %mem)
    br label %if.end
  if.end:
    ...

With allocations and deallocations represented as described as above, after
coroutine heap allocation elision optimization, the resulting main will be:

.. code-block:: llvm

  define i32 @main() {
  entry:
    call void @print(i32 4)
    call void @print(i32 5)
    call void @print(i32 6)
    ret i32 0
  }

Multiple Suspend Points
-----------------------

Let's consider the coroutine that has more than one suspend point:

.. code-block:: c++

  void *f(int n) {
     for(;;) {
       print(n++);
       <suspend>
       print(-n);
       <suspend>
     }
  }

Matching LLVM code would look like (with the rest of the code remaining the same
as the code in the previous section):

.. code-block:: llvm

  loop:
    %n.addr = phi i32 [ %n, %entry ], [ %inc, %loop.resume ]
    call void @print(i32 %n.addr) #4
    %2 = call i8 @llvm.coro.suspend(token none, i1 false)
    switch i8 %2, label %suspend [i8 0, label %loop.resume
                                  i8 1, label %cleanup]
  loop.resume:
    %inc = add nsw i32 %n.addr, 1
    %sub = xor i32 %n.addr, -1
    call void @print(i32 %sub)
    %3 = call i8 @llvm.coro.suspend(token none, i1 false)
    switch i8 %3, label %suspend [i8 0, label %loop
                                  i8 1, label %cleanup]

In this case, the coroutine frame would include a suspend index that will 
indicate at which suspend point the coroutine needs to resume. The resume 
function will use an index to jump to an appropriate basic block and will look 
as follows:

.. code-block:: llvm

  define internal fastcc void @f.Resume(%f.Frame* %FramePtr) {
  entry.Resume:
    %index.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i64 0, i32 2
    %index = load i8, i8* %index.addr, align 1
    %switch = icmp eq i8 %index, 0
    %n.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i64 0, i32 3
    %n = load i32, i32* %n.addr, align 4
    br i1 %switch, label %loop.resume, label %loop

  loop.resume:
    %sub = xor i32 %n, -1
    call void @print(i32 %sub)
    br label %suspend
  loop:
    %inc = add nsw i32 %n, 1
    store i32 %inc, i32* %n.addr, align 4
    tail call void @print(i32 %inc)
    br label %suspend

  suspend:
    %storemerge = phi i8 [ 0, %loop ], [ 1, %loop.resume ]
    store i8 %storemerge, i8* %index.addr, align 1
    ret void
  }

If different cleanup code needs to get executed for different suspend points, 
a similar switch will be in the `f.destroy` function.

.. note ::

  Using suspend index in a coroutine state and having a switch in `f.resume` and
  `f.destroy` is one of the possible implementation strategies. We explored 
  another option where a distinct `f.resume1`, `f.resume2`, etc. are created for
  every suspend point, and instead of storing an index, the resume and destroy 
  function pointers are updated at every suspend. Early testing showed that the
  current approach is easier on the optimizer than the latter so it is a 
  lowering strategy implemented at the moment.

Distinct Save and Suspend
-------------------------

In the previous example, setting a resume index (or some other state change that 
needs to happen to prepare a coroutine for resumption) happens at the same time as
a suspension of a coroutine. However, in certain cases, it is necessary to control 
when coroutine is prepared for resumption and when it is suspended.

In the following example, a coroutine represents some activity that is driven
by completions of asynchronous operations `async_op1` and `async_op2` which get
a coroutine handle as a parameter and resume the coroutine once async
operation is finished.

.. code-block:: text

  void g() {
     for (;;)
       if (cond()) {
          async_op1(<coroutine-handle>); // will resume once async_op1 completes
          <suspend>
          do_one();
       }
       else {
          async_op2(<coroutine-handle>); // will resume once async_op2 completes
          <suspend>
          do_two();
       }
     }
  }

In this case, coroutine should be ready for resumption prior to a call to 
`async_op1` and `async_op2`. The `coro.save`_ intrinsic is used to indicate a
point when coroutine should be ready for resumption (namely, when a resume index
should be stored in the coroutine frame, so that it can be resumed at the 
correct resume point):

.. code-block:: llvm

  if.true:
    %save1 = call token @llvm.coro.save(i8* %hdl)
    call void @async_op1(i8* %hdl)
    %suspend1 = call i1 @llvm.coro.suspend(token %save1, i1 false)
    switch i8 %suspend1, label %suspend [i8 0, label %resume1
                                         i8 1, label %cleanup]
  if.false:
    %save2 = call token @llvm.coro.save(i8* %hdl)
    call void @async_op2(i8* %hdl)
    %suspend2 = call i1 @llvm.coro.suspend(token %save2, i1 false)
    switch i8 %suspend1, label %suspend [i8 0, label %resume2
                                         i8 1, label %cleanup]

.. _coroutine promise:

Coroutine Promise
-----------------

A coroutine author or a frontend may designate a distinguished `alloca` that can
be used to communicate with the coroutine. This distinguished alloca is called
**coroutine promise** and is provided as the second parameter to the 
`coro.id`_ intrinsic.

The following coroutine designates a 32 bit integer `promise` and uses it to
store the current value produced by a coroutine.

.. code-block:: llvm

  define i8* @f(i32 %n) {
  entry:
    %promise = alloca i32
    %pv = bitcast i32* %promise to i8*
    %id = call token @llvm.coro.id(i32 0, i8* %pv, i8* null, i8* null)
    %need.dyn.alloc = call i1 @llvm.coro.alloc(token %id)
    br i1 %need.dyn.alloc, label %dyn.alloc, label %coro.begin
  dyn.alloc:
    %size = call i32 @llvm.coro.size.i32()
    %alloc = call i8* @malloc(i32 %size)
    br label %coro.begin
  coro.begin:
    %phi = phi i8* [ null, %entry ], [ %alloc, %dyn.alloc ]
    %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %phi)
    br label %loop
  loop:
    %n.val = phi i32 [ %n, %coro.begin ], [ %inc, %loop ]
    %inc = add nsw i32 %n.val, 1
    store i32 %n.val, i32* %promise
    %0 = call i8 @llvm.coro.suspend(token none, i1 false)
    switch i8 %0, label %suspend [i8 0, label %loop
                                  i8 1, label %cleanup]
  cleanup:
    %mem = call i8* @llvm.coro.free(token %id, i8* %hdl)
    call void @free(i8* %mem)
    br label %suspend
  suspend:
    %unused = call i1 @llvm.coro.end(i8* %hdl, i1 false)
    ret i8* %hdl
  }

A coroutine consumer can rely on the `coro.promise`_ intrinsic to access the
coroutine promise.

.. code-block:: llvm

  define i32 @main() {
  entry:
    %hdl = call i8* @f(i32 4)
    %promise.addr.raw = call i8* @llvm.coro.promise(i8* %hdl, i32 4, i1 false)
    %promise.addr = bitcast i8* %promise.addr.raw to i32*
    %val0 = load i32, i32* %promise.addr
    call void @print(i32 %val0)
    call void @llvm.coro.resume(i8* %hdl)
    %val1 = load i32, i32* %promise.addr
    call void @print(i32 %val1)
    call void @llvm.coro.resume(i8* %hdl)
    %val2 = load i32, i32* %promise.addr
    call void @print(i32 %val2)
    call void @llvm.coro.destroy(i8* %hdl)
    ret i32 0
  }

After example in this section is compiled, result of the compilation will be:

.. code-block:: llvm

  define i32 @main() {
  entry:
    tail call void @print(i32 4)
    tail call void @print(i32 5)
    tail call void @print(i32 6)
    ret i32 0
  }

.. _final:
.. _final suspend:

Final Suspend
-------------

A coroutine author or a frontend may designate a particular suspend to be final,
by setting the second argument of the `coro.suspend`_ intrinsic to `true`.
Such a suspend point has two properties:

* it is possible to check whether a suspended coroutine is at the final suspend
  point via `coro.done`_ intrinsic;

* a resumption of a coroutine stopped at the final suspend point leads to 
  undefined behavior. The only possible action for a coroutine at a final
  suspend point is destroying it via `coro.destroy`_ intrinsic.

From the user perspective, the final suspend point represents an idea of a 
coroutine reaching the end. From the compiler perspective, it is an optimization
opportunity for reducing number of resume points (and therefore switch cases) in
the resume function.

The following is an example of a function that keeps resuming the coroutine
until the final suspend point is reached after which point the coroutine is 
destroyed:

.. code-block:: llvm

  define i32 @main() {
  entry:
    %hdl = call i8* @f(i32 4)
    br label %while
  while:
    call void @llvm.coro.resume(i8* %hdl)
    %done = call i1 @llvm.coro.done(i8* %hdl)
    br i1 %done, label %end, label %while
  end:
    call void @llvm.coro.destroy(i8* %hdl)
    ret i32 0
  }

Usually, final suspend point is a frontend injected suspend point that does not
correspond to any explicitly authored suspend point of the high level language.
For example, for a Python generator that has only one suspend point:

.. code-block:: python

  def coroutine(n):
    for i in range(n):
      yield i

Python frontend would inject two more suspend points, so that the actual code
looks like this:

.. code-block:: c

  void* coroutine(int n) {
    int current_value; 
    <designate current_value to be coroutine promise>
    <SUSPEND> // injected suspend point, so that the coroutine starts suspended
    for (int i = 0; i < n; ++i) {
      current_value = i; <SUSPEND>; // corresponds to "yield i"
    }
    <SUSPEND final=true> // injected final suspend point
  }

and python iterator `__next__` would look like:

.. code-block:: c++

  int __next__(void* hdl) {
    coro.resume(hdl);
    if (coro.done(hdl)) throw StopIteration();
    return *(int*)coro.promise(hdl, 4, false);
  }

Intrinsics
==========

Coroutine Manipulation Intrinsics
---------------------------------

Intrinsics described in this section are used to manipulate an existing
coroutine. They can be used in any function which happen to have a pointer
to a `coroutine frame`_ or a pointer to a `coroutine promise`_.

.. _coro.destroy:

'llvm.coro.destroy' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Syntax:
"""""""

::

      declare void @llvm.coro.destroy(i8* <handle>)

Overview:
"""""""""

The '``llvm.coro.destroy``' intrinsic destroys a suspended
coroutine.

Arguments:
""""""""""

The argument is a coroutine handle to a suspended coroutine.

Semantics:
""""""""""

When possible, the `coro.destroy` intrinsic is replaced with a direct call to 
the coroutine destroy function. Otherwise it is replaced with an indirect call 
based on the function pointer for the destroy function stored in the coroutine
frame. Destroying a coroutine that is not suspended leads to undefined behavior.

.. _coro.resume:

'llvm.coro.resume' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

::

      declare void @llvm.coro.resume(i8* <handle>)

Overview:
"""""""""

The '``llvm.coro.resume``' intrinsic resumes a suspended coroutine.

Arguments:
""""""""""

The argument is a handle to a suspended coroutine.

Semantics:
""""""""""

When possible, the `coro.resume` intrinsic is replaced with a direct call to the
coroutine resume function. Otherwise it is replaced with an indirect call based 
on the function pointer for the resume function stored in the coroutine frame. 
Resuming a coroutine that is not suspended leads to undefined behavior.

.. _coro.done:

'llvm.coro.done' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

::

      declare i1 @llvm.coro.done(i8* <handle>)

Overview:
"""""""""

The '``llvm.coro.done``' intrinsic checks whether a suspended coroutine is at 
the final suspend point or not.

Arguments:
""""""""""

The argument is a handle to a suspended coroutine.

Semantics:
""""""""""

Using this intrinsic on a coroutine that does not have a `final suspend`_ point 
or on a coroutine that is not suspended leads to undefined behavior.

.. _coro.promise:

'llvm.coro.promise' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

::

      declare i8* @llvm.coro.promise(i8* <ptr>, i32 <alignment>, i1 <from>)

Overview:
"""""""""

The '``llvm.coro.promise``' intrinsic obtains a pointer to a 
`coroutine promise`_ given a coroutine handle and vice versa.

Arguments:
""""""""""

The first argument is a handle to a coroutine if `from` is false. Otherwise, 
it is a pointer to a coroutine promise.

The second argument is an alignment requirements of the promise. 
If a frontend designated `%promise = alloca i32` as a promise, the alignment 
argument to `coro.promise` should be the alignment of `i32` on the target 
platform. If a frontend designated `%promise = alloca i32, align 16` as a 
promise, the alignment argument should be 16.
This argument only accepts constants.

The third argument is a boolean indicating a direction of the transformation.
If `from` is true, the intrinsic returns a coroutine handle given a pointer 
to a promise. If `from` is false, the intrinsics return a pointer to a promise 
from a coroutine handle. This argument only accepts constants.

Semantics:
""""""""""

Using this intrinsic on a coroutine that does not have a coroutine promise
leads to undefined behavior. It is possible to read and modify coroutine
promise of the coroutine which is currently executing. The coroutine author and
a coroutine user are responsible to makes sure there is no data races.

Example:
""""""""

.. code-block:: llvm

  define i8* @f(i32 %n) {
  entry:
    %promise = alloca i32
    %pv = bitcast i32* %promise to i8*
    ; the second argument to coro.id points to the coroutine promise.
    %id = call token @llvm.coro.id(i32 0, i8* %pv, i8* null, i8* null)
    ...
    %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc)
    ...
    store i32 42, i32* %promise ; store something into the promise
    ...
    ret i8* %hdl
  }

  define i32 @main() {
  entry:
    %hdl = call i8* @f(i32 4) ; starts the coroutine and returns its handle
    %promise.addr.raw = call i8* @llvm.coro.promise(i8* %hdl, i32 4, i1 false)
    %promise.addr = bitcast i8* %promise.addr.raw to i32*    
    %val = load i32, i32* %promise.addr ; load a value from the promise
    call void @print(i32 %val)
    call void @llvm.coro.destroy(i8* %hdl)
    ret i32 0
  }

.. _coroutine intrinsics:

Coroutine Structure Intrinsics
------------------------------
Intrinsics described in this section are used within a coroutine to describe
the coroutine structure. They should not be used outside of a coroutine.

.. _coro.size:

'llvm.coro.size' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

    declare i32 @llvm.coro.size.i32()
    declare i64 @llvm.coro.size.i64()

Overview:
"""""""""

The '``llvm.coro.size``' intrinsic returns the number of bytes
required to store a `coroutine frame`_.

Arguments:
""""""""""

None

Semantics:
""""""""""

The `coro.size` intrinsic is lowered to a constant representing the size of
the coroutine frame. 

.. _coro.begin:

'llvm.coro.begin' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i8* @llvm.coro.begin(token <id>, i8* <mem>)

Overview:
"""""""""

The '``llvm.coro.begin``' intrinsic returns an address of the coroutine frame.

Arguments:
""""""""""

The first argument is a token returned by a call to '``llvm.coro.id``' 
identifying the coroutine.

The second argument is a pointer to a block of memory where coroutine frame
will be stored if it is allocated dynamically.

Semantics:
""""""""""

Depending on the alignment requirements of the objects in the coroutine frame
and/or on the codegen compactness reasons the pointer returned from `coro.begin` 
may be at offset to the `%mem` argument. (This could be beneficial if 
instructions that express relative access to data can be more compactly encoded 
with small positive and negative offsets).

A frontend should emit exactly one `coro.begin` intrinsic per coroutine.

.. _coro.free:

'llvm.coro.free' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i8* @llvm.coro.free(token %id, i8* <frame>)

Overview:
"""""""""

The '``llvm.coro.free``' intrinsic returns a pointer to a block of memory where 
coroutine frame is stored or `null` if this instance of a coroutine did not use
dynamically allocated memory for its coroutine frame.

Arguments:
""""""""""

The first argument is a token returned by a call to '``llvm.coro.id``' 
identifying the coroutine.

The second argument is a pointer to the coroutine frame. This should be the same
pointer that was returned by prior `coro.begin` call.

Example (custom deallocation function):
"""""""""""""""""""""""""""""""""""""""

.. code-block:: llvm

  cleanup:
    %mem = call i8* @llvm.coro.free(token %id, i8* %frame)
    %mem_not_null = icmp ne i8* %mem, null
    br i1 %mem_not_null, label %if.then, label %if.end
  if.then:
    call void @CustomFree(i8* %mem)
    br label %if.end
  if.end:
    ret void

Example (standard deallocation functions):
""""""""""""""""""""""""""""""""""""""""""

.. code-block:: llvm

  cleanup:
    %mem = call i8* @llvm.coro.free(token %id, i8* %frame)
    call void @free(i8* %mem)
    ret void

.. _coro.alloc:

'llvm.coro.alloc' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i1 @llvm.coro.alloc(token <id>)

Overview:
"""""""""

The '``llvm.coro.alloc``' intrinsic returns `true` if dynamic allocation is
required to obtain a memory for the coroutine frame and `false` otherwise.

Arguments:
""""""""""

The first argument is a token returned by a call to '``llvm.coro.id``' 
identifying the coroutine.

Semantics:
""""""""""

A frontend should emit at most one `coro.alloc` intrinsic per coroutine.
The intrinsic is used to suppress dynamic allocation of the coroutine frame
when possible.

Example:
""""""""

.. code-block:: llvm

  entry:
    %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null)
    %dyn.alloc.required = call i1 @llvm.coro.alloc(token %id)
    br i1 %dyn.alloc.required, label %coro.alloc, label %coro.begin

  coro.alloc:
    %frame.size = call i32 @llvm.coro.size()
    %alloc = call i8* @MyAlloc(i32 %frame.size)
    br label %coro.begin

  coro.begin:
    %phi = phi i8* [ null, %entry ], [ %alloc, %coro.alloc ]
    %frame = call i8* @llvm.coro.begin(token %id, i8* %phi)

.. _coro.frame:

'llvm.coro.frame' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i8* @llvm.coro.frame()

Overview:
"""""""""

The '``llvm.coro.frame``' intrinsic returns an address of the coroutine frame of
the enclosing coroutine.

Arguments:
""""""""""

None

Semantics:
""""""""""

This intrinsic is lowered to refer to the `coro.begin`_ instruction. This is
a frontend convenience intrinsic that makes it easier to refer to the
coroutine frame.

.. _coro.id:

'llvm.coro.id' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare token @llvm.coro.id(i32 <align>, i8* <promise>, i8* <coroaddr>, 
                                                          i8* <fnaddrs>)

Overview:
"""""""""

The '``llvm.coro.id``' intrinsic returns a token identifying a coroutine.

Arguments:
""""""""""

The first argument provides information on the alignment of the memory returned 
by the allocation function and given to `coro.begin` by the first argument. If 
this argument is 0, the memory is assumed to be aligned to 2 * sizeof(i8*).
This argument only accepts constants.

The second argument, if not `null`, designates a particular alloca instruction
to be a `coroutine promise`_.

The third argument is `null` coming out of the frontend. The CoroEarly pass sets
this argument to point to the function this coro.id belongs to. 

The fourth argument is `null` before coroutine is split, and later is replaced 
to point to a private global constant array containing function pointers to 
outlined resume and destroy parts of the coroutine.


Semantics:
""""""""""

The purpose of this intrinsic is to tie together `coro.id`, `coro.alloc` and
`coro.begin` belonging to the same coroutine to prevent optimization passes from
duplicating any of these instructions unless entire body of the coroutine is
duplicated.

A frontend should emit exactly one `coro.id` intrinsic per coroutine.

.. _coro.end:

'llvm.coro.end' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i1 @llvm.coro.end(i8* <handle>, i1 <unwind>)

Overview:
"""""""""

The '``llvm.coro.end``' marks the point where execution of the resume part of 
the coroutine should end and control should return to the caller.


Arguments:
""""""""""

The first argument should refer to the coroutine handle of the enclosing
coroutine. A frontend is allowed to supply null as the first parameter, in this
case `coro-early` pass will replace the null with an appropriate coroutine 
handle value.

The second argument should be `true` if this coro.end is in the block that is 
part of the unwind sequence leaving the coroutine body due to an exception and 
`false` otherwise.

Semantics:
""""""""""
The purpose of this intrinsic is to allow frontends to mark the cleanup and
other code that is only relevant during the initial invocation of the coroutine
and should not be present in resume and destroy parts. 

This intrinsic is lowered when a coroutine is split into
the start, resume and destroy parts. In the start part, it is a no-op,
in resume and destroy parts, it is replaced with `ret void` instruction and
the rest of the block containing `coro.end` instruction is discarded.
In landing pads it is replaced with an appropriate instruction to unwind to 
caller. The handling of coro.end differs depending on whether the target is 
using landingpad or WinEH exception model.

For landingpad based exception model, it is expected that frontend uses the 
`coro.end`_ intrinsic as follows:

.. code-block:: llvm

    ehcleanup:
      %InResumePart = call i1 @llvm.coro.end(i8* null, i1 true)
      br i1 %InResumePart, label %eh.resume, label %cleanup.cont

    cleanup.cont:
      ; rest of the cleanup

    eh.resume:
      %exn = load i8*, i8** %exn.slot, align 8
      %sel = load i32, i32* %ehselector.slot, align 4
      %lpad.val = insertvalue { i8*, i32 } undef, i8* %exn, 0
      %lpad.val29 = insertvalue { i8*, i32 } %lpad.val, i32 %sel, 1
      resume { i8*, i32 } %lpad.val29

The `CoroSpit` pass replaces `coro.end` with ``True`` in the resume functions,
thus leading to immediate unwind to the caller, whereas in start function it
is replaced with ``False``, thus allowing to proceed to the rest of the cleanup
code that is only needed during initial invocation of the coroutine.

For Windows Exception handling model, a frontend should attach a funclet bundle
referring to an enclosing cleanuppad as follows:

.. code-block:: llvm

    ehcleanup: 
      %tok = cleanuppad within none []
      %unused = call i1 @llvm.coro.end(i8* null, i1 true) [ "funclet"(token %tok) ]
      cleanupret from %tok unwind label %RestOfTheCleanup

The `CoroSplit` pass, if the funclet bundle is present, will insert 
``cleanupret from %tok unwind to caller`` before
the `coro.end`_ intrinsic and will remove the rest of the block.

The following table summarizes the handling of `coro.end`_ intrinsic.

+--------------------------+-------------------+-------------------------------+
|                          | In Start Function | In Resume/Destroy Functions   |
+--------------------------+-------------------+-------------------------------+
|unwind=false              | nothing           |``ret void``                   |
+------------+-------------+-------------------+-------------------------------+
|            | WinEH       | nothing           |``cleanupret unwind to caller``|
|unwind=true +-------------+-------------------+-------------------------------+
|            | Landingpad  | nothing           | nothing                       |
+------------+-------------+-------------------+-------------------------------+

.. _coro.suspend:
.. _suspend points:

'llvm.coro.suspend' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i8 @llvm.coro.suspend(token <save>, i1 <final>)

Overview:
"""""""""

The '``llvm.coro.suspend``' marks the point where execution of the coroutine 
need to get suspended and control returned back to the caller.
Conditional branches consuming the result of this intrinsic lead to basic blocks
where coroutine should proceed when suspended (-1), resumed (0) or destroyed 
(1).

Arguments:
""""""""""

The first argument refers to a token of `coro.save` intrinsic that marks the 
point when coroutine state is prepared for suspension. If `none` token is passed,
the intrinsic behaves as if there were a `coro.save` immediately preceding
the `coro.suspend` intrinsic.

The second argument indicates whether this suspension point is `final`_.
The second argument only accepts constants. If more than one suspend point is
designated as final, the resume and destroy branches should lead to the same
basic blocks.

Example (normal suspend point):
"""""""""""""""""""""""""""""""

.. code-block:: llvm

    %0 = call i8 @llvm.coro.suspend(token none, i1 false)
    switch i8 %0, label %suspend [i8 0, label %resume
                                  i8 1, label %cleanup]

Example (final suspend point):
""""""""""""""""""""""""""""""

.. code-block:: llvm

  while.end:
    %s.final = call i8 @llvm.coro.suspend(token none, i1 true)
    switch i8 %s.final, label %suspend [i8 0, label %trap
                                        i8 1, label %cleanup]
  trap: 
    call void @llvm.trap()
    unreachable

Semantics:
""""""""""

If a coroutine that was suspended at the suspend point marked by this intrinsic
is resumed via `coro.resume`_ the control will transfer to the basic block
of the 0-case. If it is resumed via `coro.destroy`_, it will proceed to the
basic block indicated by the 1-case. To suspend, coroutine proceed to the 
default label.

If suspend intrinsic is marked as final, it can consider the `true` branch
unreachable and can perform optimizations that can take advantage of that fact.

.. _coro.save:

'llvm.coro.save' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare token @llvm.coro.save(i8* <handle>)

Overview:
"""""""""

The '``llvm.coro.save``' marks the point where a coroutine need to update its 
state to prepare for resumption to be considered suspended (and thus eligible 
for resumption). 

Arguments:
""""""""""

The first argument points to a coroutine handle of the enclosing coroutine.

Semantics:
""""""""""

Whatever coroutine state changes are required to enable resumption of
the coroutine from the corresponding suspend point should be done at the point 
of `coro.save` intrinsic.

Example:
""""""""

Separate save and suspend points are necessary when a coroutine is used to 
represent an asynchronous control flow driven by callbacks representing
completions of asynchronous operations.

In such a case, a coroutine should be ready for resumption prior to a call to 
`async_op` function that may trigger resumption of a coroutine from the same or
a different thread possibly prior to `async_op` call returning control back
to the coroutine:

.. code-block:: llvm

    %save1 = call token @llvm.coro.save(i8* %hdl)
    call void @async_op1(i8* %hdl)
    %suspend1 = call i1 @llvm.coro.suspend(token %save1, i1 false)
    switch i8 %suspend1, label %suspend [i8 0, label %resume1
                                         i8 1, label %cleanup]

.. _coro.param:

'llvm.coro.param' Intrinsic
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::

  declare i1 @llvm.coro.param(i8* <original>, i8* <copy>)

Overview:
"""""""""

The '``llvm.coro.param``' is used by a frontend to mark up the code used to
construct and destruct copies of the parameters. If the optimizer discovers that
a particular parameter copy is not used after any suspends, it can remove the
construction and destruction of the copy by replacing corresponding coro.param
with `i1 false` and replacing any use of the `copy` with the `original`.

Arguments:
""""""""""

The first argument points to an `alloca` storing the value of a parameter to a 
coroutine. 

The second argument points to an `alloca` storing the value of the copy of that
parameter.

Semantics:
""""""""""

The optimizer is free to always replace this intrinsic with `i1 true`.

The optimizer is also allowed to replace it with `i1 false` provided that the 
parameter copy is only used prior to control flow reaching any of the suspend
points. The code that would be DCE'd if the `coro.param` is replaced with 
`i1 false` is not considered to be a use of the parameter copy.

The frontend can emit this intrinsic if its language rules allow for this 
optimization.

Example:
""""""""
Consider the following example. A coroutine takes two parameters `a` and `b`
that has a destructor and a move constructor.

.. code-block:: c++

  struct A { ~A(); A(A&&); bool foo(); void bar(); };

  task<int> f(A a, A b) {
    if (a.foo())
      return 42;

    a.bar();
    co_await read_async(); // introduces suspend point
    b.bar();
  }

Note that, uses of `b` is used after a suspend point and thus must be copied
into a coroutine frame, whereas `a` does not have to, since it never used 
after suspend.

A frontend can create parameter copies for `a` and `b` as follows:

.. code-block:: text

  task<int> f(A a', A b') {
    a = alloca A;
    b = alloca A;
    // move parameters to its copies
    if (coro.param(a', a)) A::A(a, A&& a');
    if (coro.param(b', b)) A::A(b, A&& b');
    ...
    // destroy parameters copies
    if (coro.param(a', a)) A::~A(a);
    if (coro.param(b', b)) A::~A(b);
  }

The optimizer can replace coro.param(a',a) with `i1 false` and replace all uses
of `a` with `a'`, since it is not used after suspend.

The optimizer must replace coro.param(b', b) with `i1 true`, since `b` is used
after suspend and therefore, it has to reside in the coroutine frame.

Coroutine Transformation Passes
===============================
CoroEarly
---------
The pass CoroEarly lowers coroutine intrinsics that hide the details of the
structure of the coroutine frame, but, otherwise not needed to be preserved to
help later coroutine passes. This pass lowers `coro.frame`_, `coro.done`_, 
and `coro.promise`_ intrinsics.

.. _CoroSplit:

CoroSplit
---------
The pass CoroSplit buides coroutine frame and outlines resume and destroy parts 
into separate functions.

CoroElide
---------
The pass CoroElide examines if the inlined coroutine is eligible for heap 
allocation elision optimization. If so, it replaces 
`coro.begin` intrinsic with an address of a coroutine frame placed on its caller
and replaces `coro.alloc` and `coro.free` intrinsics with `false` and `null`
respectively to remove the deallocation code. 
This pass also replaces `coro.resume` and `coro.destroy` intrinsics with direct 
calls to resume and destroy functions for a particular coroutine where possible.

CoroCleanup
-----------
This pass runs late to lower all coroutine related intrinsics not replaced by
earlier passes.

Areas Requiring Attention
=========================
#. A coroutine frame is bigger than it could be. Adding stack packing and stack 
   coloring like optimization on the coroutine frame will result in tighter
   coroutine frames.

#. Take advantage of the lifetime intrinsics for the data that goes into the
   coroutine frame. Leave lifetime intrinsics as is for the data that stays in
   allocas.

#. The CoroElide optimization pass relies on coroutine ramp function to be
   inlined. It would be beneficial to split the ramp function further to 
   increase the chance that it will get inlined into its caller.

#. Design a convention that would make it possible to apply coroutine heap
   elision optimization across ABI boundaries.

#. Cannot handle coroutines with `inalloca` parameters (used in x86 on Windows).

#. Alignment is ignored by coro.begin and coro.free intrinsics.

#. Make required changes to make sure that coroutine optimizations work with
   LTO.

#. More tests, more tests, more tests