reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
.. role:: raw-html(raw)
   :format: html

========================
LLVM Bitcode File Format
========================

.. contents::
   :local:

Abstract
========

This document describes the LLVM bitstream file format and the encoding of the
LLVM IR into it.

Overview
========

What is commonly known as the LLVM bitcode file format (also, sometimes
anachronistically known as bytecode) is actually two things: a `bitstream
container format`_ and an `encoding of LLVM IR`_ into the container format.

The bitstream format is an abstract encoding of structured data, very similar to
XML in some ways.  Like XML, bitstream files contain tags, and nested
structures, and you can parse the file without having to understand the tags.
Unlike XML, the bitstream format is a binary encoding, and unlike XML it
provides a mechanism for the file to self-describe "abbreviations", which are
effectively size optimizations for the content.

LLVM IR files may be optionally embedded into a `wrapper`_ structure, or in a
`native object file`_. Both of these mechanisms make it easy to embed extra
data along with LLVM IR files.

This document first describes the LLVM bitstream format, describes the wrapper
format, then describes the record structure used by LLVM IR files.

.. _bitstream container format:

Bitstream Format
================

The bitstream format is literally a stream of bits, with a very simple
structure.  This structure consists of the following concepts:

* A "`magic number`_" that identifies the contents of the stream.

* Encoding `primitives`_ like variable bit-rate integers.

* `Blocks`_, which define nested content.

* `Data Records`_, which describe entities within the file.

* Abbreviations, which specify compression optimizations for the file.

Note that the :doc:`llvm-bcanalyzer <CommandGuide/llvm-bcanalyzer>` tool can be
used to dump and inspect arbitrary bitstreams, which is very useful for
understanding the encoding.

.. _magic number:

Magic Numbers
-------------

The first two bytes of a bitcode file are 'BC' (``0x42``, ``0x43``).  The second
two bytes are an application-specific magic number.  Generic bitcode tools can
look at only the first two bytes to verify the file is bitcode, while
application-specific programs will want to look at all four.

.. _primitives:

Primitives
----------

A bitstream literally consists of a stream of bits, which are read in order
starting with the least significant bit of each byte.  The stream is made up of
a number of primitive values that encode a stream of unsigned integer values.
These integers are encoded in two ways: either as `Fixed Width Integers`_ or as
`Variable Width Integers`_.

.. _Fixed Width Integers:
.. _fixed-width value:

Fixed Width Integers
^^^^^^^^^^^^^^^^^^^^

Fixed-width integer values have their low bits emitted directly to the file.
For example, a 3-bit integer value encodes 1 as 001.  Fixed width integers are
used when there are a well-known number of options for a field.  For example,
boolean values are usually encoded with a 1-bit wide integer.

.. _Variable Width Integers:
.. _Variable Width Integer:
.. _variable-width value:

Variable Width Integers
^^^^^^^^^^^^^^^^^^^^^^^

Variable-width integer (VBR) values encode values of arbitrary size, optimizing
for the case where the values are small.  Given a 4-bit VBR field, any 3-bit
value (0 through 7) is encoded directly, with the high bit set to zero.  Values
larger than N-1 bits emit their bits in a series of N-1 bit chunks, where all
but the last set the high bit.

For example, the value 27 (0x1B) is encoded as 1011 0011 when emitted as a vbr4
value.  The first set of four bits indicates the value 3 (011) with a
continuation piece (indicated by a high bit of 1).  The next word indicates a
value of 24 (011 << 3) with no continuation.  The sum (3+24) yields the value
27.

.. _char6-encoded value:

6-bit characters
^^^^^^^^^^^^^^^^

6-bit characters encode common characters into a fixed 6-bit field.  They
represent the following characters with the following 6-bit values:

::

  'a' .. 'z' ---  0 .. 25
  'A' .. 'Z' --- 26 .. 51
  '0' .. '9' --- 52 .. 61
         '.' --- 62
         '_' --- 63

This encoding is only suitable for encoding characters and strings that consist
only of the above characters.  It is completely incapable of encoding characters
not in the set.

Word Alignment
^^^^^^^^^^^^^^

Occasionally, it is useful to emit zero bits until the bitstream is a multiple
of 32 bits.  This ensures that the bit position in the stream can be represented
as a multiple of 32-bit words.

Abbreviation IDs
----------------

A bitstream is a sequential series of `Blocks`_ and `Data Records`_.  Both of
these start with an abbreviation ID encoded as a fixed-bitwidth field.  The
width is specified by the current block, as described below.  The value of the
abbreviation ID specifies either a builtin ID (which have special meanings,
defined below) or one of the abbreviation IDs defined for the current block by
the stream itself.

The set of builtin abbrev IDs is:

* 0 - `END_BLOCK`_ --- This abbrev ID marks the end of the current block.

* 1 - `ENTER_SUBBLOCK`_ --- This abbrev ID marks the beginning of a new
  block.

* 2 - `DEFINE_ABBREV`_ --- This defines a new abbreviation.

* 3 - `UNABBREV_RECORD`_ --- This ID specifies the definition of an
  unabbreviated record.

Abbreviation IDs 4 and above are defined by the stream itself, and specify an
`abbreviated record encoding`_.

.. _Blocks:

Blocks
------

Blocks in a bitstream denote nested regions of the stream, and are identified by
a content-specific id number (for example, LLVM IR uses an ID of 12 to represent
function bodies).  Block IDs 0-7 are reserved for `standard blocks`_ whose
meaning is defined by Bitcode; block IDs 8 and greater are application
specific. Nested blocks capture the hierarchical structure of the data encoded
in it, and various properties are associated with blocks as the file is parsed.
Block definitions allow the reader to efficiently skip blocks in constant time
if the reader wants a summary of blocks, or if it wants to efficiently skip data
it does not understand.  The LLVM IR reader uses this mechanism to skip function
bodies, lazily reading them on demand.

When reading and encoding the stream, several properties are maintained for the
block.  In particular, each block maintains:

#. A current abbrev id width.  This value starts at 2 at the beginning of the
   stream, and is set every time a block record is entered.  The block entry
   specifies the abbrev id width for the body of the block.

#. A set of abbreviations.  Abbreviations may be defined within a block, in
   which case they are only defined in that block (neither subblocks nor
   enclosing blocks see the abbreviation).  Abbreviations can also be defined
   inside a `BLOCKINFO`_ block, in which case they are defined in all blocks
   that match the ID that the ``BLOCKINFO`` block is describing.

As sub blocks are entered, these properties are saved and the new sub-block has
its own set of abbreviations, and its own abbrev id width.  When a sub-block is
popped, the saved values are restored.

.. _ENTER_SUBBLOCK:

ENTER_SUBBLOCK Encoding
^^^^^^^^^^^^^^^^^^^^^^^

:raw-html:`<tt>`
[ENTER_SUBBLOCK, blockid\ :sub:`vbr8`, newabbrevlen\ :sub:`vbr4`, <align32bits>, blocklen_32]
:raw-html:`</tt>`

The ``ENTER_SUBBLOCK`` abbreviation ID specifies the start of a new block
record.  The ``blockid`` value is encoded as an 8-bit VBR identifier, and
indicates the type of block being entered, which can be a `standard block`_ or
an application-specific block.  The ``newabbrevlen`` value is a 4-bit VBR, which
specifies the abbrev id width for the sub-block.  The ``blocklen`` value is a
32-bit aligned value that specifies the size of the subblock in 32-bit
words. This value allows the reader to skip over the entire block in one jump.

.. _END_BLOCK:

END_BLOCK Encoding
^^^^^^^^^^^^^^^^^^

``[END_BLOCK, <align32bits>]``

The ``END_BLOCK`` abbreviation ID specifies the end of the current block record.
Its end is aligned to 32-bits to ensure that the size of the block is an even
multiple of 32-bits.

.. _Data Records:

Data Records
------------

Data records consist of a record code and a number of (up to) 64-bit integer
values.  The interpretation of the code and values is application specific and
may vary between different block types.  Records can be encoded either using an
unabbrev record, or with an abbreviation.  In the LLVM IR format, for example,
there is a record which encodes the target triple of a module.  The code is
``MODULE_CODE_TRIPLE``, and the values of the record are the ASCII codes for the
characters in the string.

.. _UNABBREV_RECORD:

UNABBREV_RECORD Encoding
^^^^^^^^^^^^^^^^^^^^^^^^

:raw-html:`<tt>`
[UNABBREV_RECORD, code\ :sub:`vbr6`, numops\ :sub:`vbr6`, op0\ :sub:`vbr6`, op1\ :sub:`vbr6`, ...]
:raw-html:`</tt>`

An ``UNABBREV_RECORD`` provides a default fallback encoding, which is both
completely general and extremely inefficient.  It can describe an arbitrary
record by emitting the code and operands as VBRs.

For example, emitting an LLVM IR target triple as an unabbreviated record
requires emitting the ``UNABBREV_RECORD`` abbrevid, a vbr6 for the
``MODULE_CODE_TRIPLE`` code, a vbr6 for the length of the string, which is equal
to the number of operands, and a vbr6 for each character.  Because there are no
letters with values less than 32, each letter would need to be emitted as at
least a two-part VBR, which means that each letter would require at least 12
bits.  This is not an efficient encoding, but it is fully general.

.. _abbreviated record encoding:

Abbreviated Record Encoding
^^^^^^^^^^^^^^^^^^^^^^^^^^^

``[<abbrevid>, fields...]``

An abbreviated record is a abbreviation id followed by a set of fields that are
encoded according to the `abbreviation definition`_.  This allows records to be
encoded significantly more densely than records encoded with the
`UNABBREV_RECORD`_ type, and allows the abbreviation types to be specified in
the stream itself, which allows the files to be completely self describing.  The
actual encoding of abbreviations is defined below.

The record code, which is the first field of an abbreviated record, may be
encoded in the abbreviation definition (as a literal operand) or supplied in the
abbreviated record (as a Fixed or VBR operand value).

.. _abbreviation definition:

Abbreviations
-------------

Abbreviations are an important form of compression for bitstreams.  The idea is
to specify a dense encoding for a class of records once, then use that encoding
to emit many records.  It takes space to emit the encoding into the file, but
the space is recouped (hopefully plus some) when the records that use it are
emitted.

Abbreviations can be determined dynamically per client, per file. Because the
abbreviations are stored in the bitstream itself, different streams of the same
format can contain different sets of abbreviations according to the needs of the
specific stream.  As a concrete example, LLVM IR files usually emit an
abbreviation for binary operators.  If a specific LLVM module contained no or
few binary operators, the abbreviation does not need to be emitted.

.. _DEFINE_ABBREV:

DEFINE_ABBREV Encoding
^^^^^^^^^^^^^^^^^^^^^^

:raw-html:`<tt>`
[DEFINE_ABBREV, numabbrevops\ :sub:`vbr5`, abbrevop0, abbrevop1, ...]
:raw-html:`</tt>`

A ``DEFINE_ABBREV`` record adds an abbreviation to the list of currently defined
abbreviations in the scope of this block.  This definition only exists inside
this immediate block --- it is not visible in subblocks or enclosing blocks.
Abbreviations are implicitly assigned IDs sequentially starting from 4 (the
first application-defined abbreviation ID).  Any abbreviations defined in a
``BLOCKINFO`` record for the particular block type receive IDs first, in order,
followed by any abbreviations defined within the block itself.  Abbreviated data
records reference this ID to indicate what abbreviation they are invoking.

An abbreviation definition consists of the ``DEFINE_ABBREV`` abbrevid followed
by a VBR that specifies the number of abbrev operands, then the abbrev operands
themselves.  Abbreviation operands come in three forms.  They all start with a
single bit that indicates whether the abbrev operand is a literal operand (when
the bit is 1) or an encoding operand (when the bit is 0).

#. Literal operands --- :raw-html:`<tt>` [1\ :sub:`1`, litvalue\
   :sub:`vbr8`] :raw-html:`</tt>` --- Literal operands specify that the value in
   the result is always a single specific value.  This specific value is emitted
   as a vbr8 after the bit indicating that it is a literal operand.

#. Encoding info without data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\
   :sub:`3`] :raw-html:`</tt>` --- Operand encodings that do not have extra data
   are just emitted as their code.

#. Encoding info with data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\
   :sub:`3`, value\ :sub:`vbr5`] :raw-html:`</tt>` --- Operand encodings that do
   have extra data are emitted as their code, followed by the extra data.

The possible operand encodings are:

* Fixed (code 1): The field should be emitted as a `fixed-width value`_, whose
  width is specified by the operand's extra data.

* VBR (code 2): The field should be emitted as a `variable-width value`_, whose
  width is specified by the operand's extra data.

* Array (code 3): This field is an array of values.  The array operand has no
  extra data, but expects another operand to follow it, indicating the element
  type of the array.  When reading an array in an abbreviated record, the first
  integer is a vbr6 that indicates the array length, followed by the encoded
  elements of the array.  An array may only occur as the last operand of an
  abbreviation (except for the one final operand that gives the array's
  type).

* Char6 (code 4): This field should be emitted as a `char6-encoded value`_.
  This operand type takes no extra data. Char6 encoding is normally used as an
  array element type.

* Blob (code 5): This field is emitted as a vbr6, followed by padding to a
  32-bit boundary (for alignment) and an array of 8-bit objects.  The array of
  bytes is further followed by tail padding to ensure that its total length is a
  multiple of 4 bytes.  This makes it very efficient for the reader to decode
  the data without having to make a copy of it: it can use a pointer to the data
  in the mapped in file and poke directly at it.  A blob may only occur as the
  last operand of an abbreviation.

For example, target triples in LLVM modules are encoded as a record of the form
``[TRIPLE, 'a', 'b', 'c', 'd']``.  Consider if the bitstream emitted the
following abbrev entry:

::

  [0, Fixed, 4]
  [0, Array]
  [0, Char6]

When emitting a record with this abbreviation, the above entry would be emitted
as:

:raw-html:`<tt><blockquote>`
[4\ :sub:`abbrevwidth`, 2\ :sub:`4`, 4\ :sub:`vbr6`, 0\ :sub:`6`, 1\ :sub:`6`, 2\ :sub:`6`, 3\ :sub:`6`]
:raw-html:`</blockquote></tt>`

These values are:

#. The first value, 4, is the abbreviation ID for this abbreviation.

#. The second value, 2, is the record code for ``TRIPLE`` records within LLVM IR
   file ``MODULE_BLOCK`` blocks.

#. The third value, 4, is the length of the array.

#. The rest of the values are the char6 encoded values for ``"abcd"``.

With this abbreviation, the triple is emitted with only 37 bits (assuming a
abbrev id width of 3).  Without the abbreviation, significantly more space would
be required to emit the target triple.  Also, because the ``TRIPLE`` value is
not emitted as a literal in the abbreviation, the abbreviation can also be used
for any other string value.

.. _standard blocks:
.. _standard block:

Standard Blocks
---------------

In addition to the basic block structure and record encodings, the bitstream
also defines specific built-in block types.  These block types specify how the
stream is to be decoded or other metadata.  In the future, new standard blocks
may be added.  Block IDs 0-7 are reserved for standard blocks.

.. _BLOCKINFO:

#0 - BLOCKINFO Block
^^^^^^^^^^^^^^^^^^^^

The ``BLOCKINFO`` block allows the description of metadata for other blocks.
The currently specified records are:

::

  [SETBID (#1), blockid]
  [DEFINE_ABBREV, ...]
  [BLOCKNAME, ...name...]
  [SETRECORDNAME, RecordID, ...name...]

The ``SETBID`` record (code 1) indicates which block ID is being described.
``SETBID`` records can occur multiple times throughout the block to change which
block ID is being described.  There must be a ``SETBID`` record prior to any
other records.

Standard ``DEFINE_ABBREV`` records can occur inside ``BLOCKINFO`` blocks, but
unlike their occurrence in normal blocks, the abbreviation is defined for blocks
matching the block ID we are describing, *not* the ``BLOCKINFO`` block
itself.  The abbreviations defined in ``BLOCKINFO`` blocks receive abbreviation
IDs as described in `DEFINE_ABBREV`_.

The ``BLOCKNAME`` record (code 2) can optionally occur in this block.  The
elements of the record are the bytes of the string name of the block.
llvm-bcanalyzer can use this to dump out bitcode files symbolically.

The ``SETRECORDNAME`` record (code 3) can also optionally occur in this block.
The first operand value is a record ID number, and the rest of the elements of
the record are the bytes for the string name of the record.  llvm-bcanalyzer can
use this to dump out bitcode files symbolically.

Note that although the data in ``BLOCKINFO`` blocks is described as "metadata,"
the abbreviations they contain are essential for parsing records from the
corresponding blocks.  It is not safe to skip them.

.. _wrapper:

Bitcode Wrapper Format
======================

Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper
structure.  This structure contains a simple header that indicates the offset
and size of the embedded BC file.  This allows additional information to be
stored alongside the BC file.  The structure of this file header is:

:raw-html:`<tt><blockquote>`
[Magic\ :sub:`32`, Version\ :sub:`32`, Offset\ :sub:`32`, Size\ :sub:`32`, CPUType\ :sub:`32`]
:raw-html:`</blockquote></tt>`

Each of the fields are 32-bit fields stored in little endian form (as with the
rest of the bitcode file fields).  The Magic number is always ``0x0B17C0DE`` and
the version is currently always ``0``.  The Offset field is the offset in bytes
to the start of the bitcode stream in the file, and the Size field is the size
in bytes of the stream. CPUType is a target-specific value that can be used to
encode the CPU of the target.

.. _native object file:

Native Object File Wrapper Format
=================================

Bitcode files for LLVM IR may also be wrapped in a native object file
(i.e. ELF, COFF, Mach-O).  The bitcode must be stored in a section of the object
file named ``__LLVM,__bitcode`` for MachO and ``.llvmbc`` for the other object
formats.  This wrapper format is useful for accommodating LTO in compilation
pipelines where intermediate objects must be native object files which contain
metadata in other sections.

Not all tools support this format.

.. _encoding of LLVM IR:

LLVM IR Encoding
================

LLVM IR is encoded into a bitstream by defining blocks and records.  It uses
blocks for things like constant pools, functions, symbol tables, etc.  It uses
records for things like instructions, global variable descriptors, type
descriptions, etc.  This document does not describe the set of abbreviations
that the writer uses, as these are fully self-described in the file, and the
reader is not allowed to build in any knowledge of this.

Basics
------

LLVM IR Magic Number
^^^^^^^^^^^^^^^^^^^^

The magic number for LLVM IR files is:

:raw-html:`<tt><blockquote>`
[0x0\ :sub:`4`, 0xC\ :sub:`4`, 0xE\ :sub:`4`, 0xD\ :sub:`4`]
:raw-html:`</blockquote></tt>`

When combined with the bitcode magic number and viewed as bytes, this is
``"BC 0xC0DE"``.

.. _Signed VBRs:

Signed VBRs
^^^^^^^^^^^

`Variable Width Integer`_ encoding is an efficient way to encode arbitrary sized
unsigned values, but is an extremely inefficient for encoding signed values, as
signed values are otherwise treated as maximally large unsigned values.

As such, signed VBR values of a specific width are emitted as follows:

* Positive values are emitted as VBRs of the specified width, but with their
  value shifted left by one.

* Negative values are emitted as VBRs of the specified width, but the negated
  value is shifted left by one, and the low bit is set.

With this encoding, small positive and small negative values can both be emitted
efficiently. Signed VBR encoding is used in ``CST_CODE_INTEGER`` and
``CST_CODE_WIDE_INTEGER`` records within ``CONSTANTS_BLOCK`` blocks.
It is also used for phi instruction operands in `MODULE_CODE_VERSION`_ 1.

LLVM IR Blocks
^^^^^^^^^^^^^^

LLVM IR is defined with the following blocks:

* 8 --- `MODULE_BLOCK`_ --- This is the top-level block that contains the entire
  module, and describes a variety of per-module information.

* 9 --- `PARAMATTR_BLOCK`_ --- This enumerates the parameter attributes.

* 10 --- `PARAMATTR_GROUP_BLOCK`_ --- This describes the attribute group table.

* 11 --- `CONSTANTS_BLOCK`_ --- This describes constants for a module or
  function.

* 12 --- `FUNCTION_BLOCK`_ --- This describes a function body.

* 14 --- `VALUE_SYMTAB_BLOCK`_ --- This describes a value symbol table.

* 15 --- `METADATA_BLOCK`_ --- This describes metadata items.

* 16 --- `METADATA_ATTACHMENT`_ --- This contains records associating metadata
  with function instruction values.

* 17 --- `TYPE_BLOCK`_ --- This describes all of the types in the module.

* 23 --- `STRTAB_BLOCK`_ --- The bitcode file's string table.

.. _MODULE_BLOCK:

MODULE_BLOCK Contents
---------------------

The ``MODULE_BLOCK`` block (id 8) is the top-level block for LLVM bitcode files,
and each bitcode file must contain exactly one. In addition to records
(described below) containing information about the module, a ``MODULE_BLOCK``
block may contain the following sub-blocks:

* `BLOCKINFO`_
* `PARAMATTR_BLOCK`_
* `PARAMATTR_GROUP_BLOCK`_
* `TYPE_BLOCK`_
* `VALUE_SYMTAB_BLOCK`_
* `CONSTANTS_BLOCK`_
* `FUNCTION_BLOCK`_
* `METADATA_BLOCK`_

.. _MODULE_CODE_VERSION:

MODULE_CODE_VERSION Record
^^^^^^^^^^^^^^^^^^^^^^^^^^

``[VERSION, version#]``

The ``VERSION`` record (code 1) contains a single value indicating the format
version. Versions 0, 1 and 2 are supported at this time. The difference between
version 0 and 1 is in the encoding of instruction operands in
each `FUNCTION_BLOCK`_.

In version 0, each value defined by an instruction is assigned an ID
unique to the function. Function-level value IDs are assigned starting from
``NumModuleValues`` since they share the same namespace as module-level
values. The value enumerator resets after each function. When a value is
an operand of an instruction, the value ID is used to represent the operand.
For large functions or large modules, these operand values can be large.

The encoding in version 1 attempts to avoid large operand values
in common cases. Instead of using the value ID directly, operands are
encoded as relative to the current instruction. Thus, if an operand
is the value defined by the previous instruction, the operand
will be encoded as 1.

For example, instead of

.. code-block:: none

  #n = load #n-1
  #n+1 = icmp eq #n, #const0
  br #n+1, label #(bb1), label #(bb2)

version 1 will encode the instructions as

.. code-block:: none

  #n = load #1
  #n+1 = icmp eq #1, (#n+1)-#const0
  br #1, label #(bb1), label #(bb2)

Note in the example that operands which are constants also use
the relative encoding, while operands like basic block labels
do not use the relative encoding.

Forward references will result in a negative value.
This can be inefficient, as operands are normally encoded
as unsigned VBRs. However, forward references are rare, except in the
case of phi instructions. For phi instructions, operands are encoded as
`Signed VBRs`_ to deal with forward references.

In version 2, the meaning of module records ``FUNCTION``, ``GLOBALVAR``,
``ALIAS``, ``IFUNC`` and ``COMDAT`` change such that the first two operands
specify an offset and size of a string in a string table (see `STRTAB_BLOCK
Contents`_), the function name is removed from the ``FNENTRY`` record in the
value symbol table, and the top-level ``VALUE_SYMTAB_BLOCK`` may only contain
``FNENTRY`` records.

MODULE_CODE_TRIPLE Record
^^^^^^^^^^^^^^^^^^^^^^^^^

``[TRIPLE, ...string...]``

The ``TRIPLE`` record (code 2) contains a variable number of values representing
the bytes of the ``target triple`` specification string.

MODULE_CODE_DATALAYOUT Record
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``[DATALAYOUT, ...string...]``

The ``DATALAYOUT`` record (code 3) contains a variable number of values
representing the bytes of the ``target datalayout`` specification string.

MODULE_CODE_ASM Record
^^^^^^^^^^^^^^^^^^^^^^

``[ASM, ...string...]``

The ``ASM`` record (code 4) contains a variable number of values representing
the bytes of ``module asm`` strings, with individual assembly blocks separated
by newline (ASCII 10) characters.

.. _MODULE_CODE_SECTIONNAME:

MODULE_CODE_SECTIONNAME Record
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``[SECTIONNAME, ...string...]``

The ``SECTIONNAME`` record (code 5) contains a variable number of values
representing the bytes of a single section name string. There should be one
``SECTIONNAME`` record for each section name referenced (e.g., in global
variable or function ``section`` attributes) within the module. These records
can be referenced by the 1-based index in the *section* fields of ``GLOBALVAR``
or ``FUNCTION`` records.

MODULE_CODE_DEPLIB Record
^^^^^^^^^^^^^^^^^^^^^^^^^

``[DEPLIB, ...string...]``

The ``DEPLIB`` record (code 6) contains a variable number of values representing
the bytes of a single dependent library name string, one of the libraries
mentioned in a ``deplibs`` declaration.  There should be one ``DEPLIB`` record
for each library name referenced.

MODULE_CODE_GLOBALVAR Record
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``[GLOBALVAR, strtab offset, strtab size, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal, unnamed_addr, externally_initialized, dllstorageclass, comdat]``

The ``GLOBALVAR`` record (code 7) marks the declaration or definition of a
global variable. The operand fields are:

* *strtab offset*, *strtab size*: Specifies the name of the global variable.
  See `STRTAB_BLOCK Contents`_.

* *pointer type*: The type index of the pointer type used to point to this
  global variable

* *isconst*: Non-zero if the variable is treated as constant within the module,
  or zero if it is not

* *initid*: If non-zero, the value index of the initializer for this variable,
  plus 1.

.. _linkage type:

* *linkage*: An encoding of the linkage type for this variable:

  * ``external``: code 0
  * ``weak``: code 1
  * ``appending``: code 2
  * ``internal``: code 3
  * ``linkonce``: code 4
  * ``dllimport``: code 5
  * ``dllexport``: code 6
  * ``extern_weak``: code 7
  * ``common``: code 8
  * ``private``: code 9
  * ``weak_odr``: code 10
  * ``linkonce_odr``: code 11
  * ``available_externally``: code 12
  * deprecated : code 13
  * deprecated : code 14

* alignment*: The logarithm base 2 of the variable's requested alignment, plus 1

* *section*: If non-zero, the 1-based section index in the table of
  `MODULE_CODE_SECTIONNAME`_ entries.

.. _visibility:

* *visibility*: If present, an encoding of the visibility of this variable:

  * ``default``: code 0
  * ``hidden``: code 1
  * ``protected``: code 2

.. _bcthreadlocal:

* *threadlocal*: If present, an encoding of the thread local storage mode of the
  variable:

  * ``not thread local``: code 0
  * ``thread local; default TLS model``: code 1
  * ``localdynamic``: code 2
  * ``initialexec``: code 3
  * ``localexec``: code 4

.. _bcunnamedaddr:

* *unnamed_addr*: If present, an encoding of the ``unnamed_addr`` attribute of this
  variable:

  * not ``unnamed_addr``: code 0
  * ``unnamed_addr``: code 1
  * ``local_unnamed_addr``: code 2

.. _bcdllstorageclass:

* *dllstorageclass*: If present, an encoding of the DLL storage class of this variable:

  * ``default``: code 0
  * ``dllimport``: code 1
  * ``dllexport``: code 2

* *comdat*: An encoding of the COMDAT of this function

.. _FUNCTION:

MODULE_CODE_FUNCTION Record
^^^^^^^^^^^^^^^^^^^^^^^^^^^

``[FUNCTION, strtab offset, strtab size, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc, prologuedata, dllstorageclass, comdat, prefixdata, personalityfn]``

The ``FUNCTION`` record (code 8) marks the declaration or definition of a
function. The operand fields are:

* *strtab offset*, *strtab size*: Specifies the name of the function.
  See `STRTAB_BLOCK Contents`_.

* *type*: The type index of the function type describing this function

* *callingconv*: The calling convention number:
  * ``ccc``: code 0
  * ``fastcc``: code 8
  * ``coldcc``: code 9
  * ``webkit_jscc``: code 12
  * ``anyregcc``: code 13
  * ``preserve_mostcc``: code 14
  * ``preserve_allcc``: code 15
  * ``swiftcc`` : code 16
  * ``cxx_fast_tlscc``: code 17
  * ``x86_stdcallcc``: code 64
  * ``x86_fastcallcc``: code 65
  * ``arm_apcscc``: code 66
  * ``arm_aapcscc``: code 67
  * ``arm_aapcs_vfpcc``: code 68

* isproto*: Non-zero if this entry represents a declaration rather than a
  definition

* *linkage*: An encoding of the `linkage type`_ for this function

* *paramattr*: If nonzero, the 1-based parameter attribute index into the table
  of `PARAMATTR_CODE_ENTRY`_ entries.

* *alignment*: The logarithm base 2 of the function's requested alignment, plus
  1

* *section*: If non-zero, the 1-based section index in the table of
  `MODULE_CODE_SECTIONNAME`_ entries.

* *visibility*: An encoding of the `visibility`_ of this function

* *gc*: If present and nonzero, the 1-based garbage collector index in the table
  of `MODULE_CODE_GCNAME`_ entries.

* *unnamed_addr*: If present, an encoding of the
  :ref:`unnamed_addr<bcunnamedaddr>` attribute of this function

* *prologuedata*: If non-zero, the value index of the prologue data for this function,
  plus 1.

* *dllstorageclass*: An encoding of the
  :ref:`dllstorageclass<bcdllstorageclass>` of this function

* *comdat*: An encoding of the COMDAT of this function

* *prefixdata*: If non-zero, the value index of the prefix data for this function,
  plus 1.

* *personalityfn*: If non-zero, the value index of the personality function for this function,
  plus 1.

MODULE_CODE_ALIAS Record
^^^^^^^^^^^^^^^^^^^^^^^^

``[ALIAS, strtab offset, strtab size, alias type, aliasee val#, linkage, visibility, dllstorageclass, threadlocal, unnamed_addr]``

The ``ALIAS`` record (code 9) marks the definition of an alias. The operand
fields are

* *strtab offset*, *strtab size*: Specifies the name of the alias.
  See `STRTAB_BLOCK Contents`_.

* *alias type*: The type index of the alias

* *aliasee val#*: The value index of the aliased value

* *linkage*: An encoding of the `linkage type`_ for this alias

* *visibility*: If present, an encoding of the `visibility`_ of the alias

* *dllstorageclass*: If present, an encoding of the
  :ref:`dllstorageclass<bcdllstorageclass>` of the alias

* *threadlocal*: If present, an encoding of the
  :ref:`thread local property<bcthreadlocal>` of the alias

* *unnamed_addr*: If present, an encoding of the
  :ref:`unnamed_addr<bcunnamedaddr>` attribute of this alias

.. _MODULE_CODE_GCNAME:

MODULE_CODE_GCNAME Record
^^^^^^^^^^^^^^^^^^^^^^^^^

``[GCNAME, ...string...]``

The ``GCNAME`` record (code 11) contains a variable number of values
representing the bytes of a single garbage collector name string. There should
be one ``GCNAME`` record for each garbage collector name referenced in function
``gc`` attributes within the module. These records can be referenced by 1-based
index in the *gc* fields of ``FUNCTION`` records.

.. _PARAMATTR_BLOCK:

PARAMATTR_BLOCK Contents
------------------------

The ``PARAMATTR_BLOCK`` block (id 9) contains a table of entries describing the
attributes of function parameters. These entries are referenced by 1-based index
in the *paramattr* field of module block `FUNCTION`_ records, or within the
*attr* field of function block ``INST_INVOKE`` and ``INST_CALL`` records.

Entries within ``PARAMATTR_BLOCK`` are constructed to ensure that each is unique
(i.e., no two indices represent equivalent attribute lists).

.. _PARAMATTR_CODE_ENTRY:

PARAMATTR_CODE_ENTRY Record
^^^^^^^^^^^^^^^^^^^^^^^^^^^

``[ENTRY, attrgrp0, attrgrp1, ...]``

The ``ENTRY`` record (code 2) contains a variable number of values describing a
unique set of function parameter attributes. Each *attrgrp* value is used as a
key with which to look up an entry in the the attribute group table described
in the ``PARAMATTR_GROUP_BLOCK`` block.

.. _PARAMATTR_CODE_ENTRY_OLD:

PARAMATTR_CODE_ENTRY_OLD Record
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. note::
  This is a legacy encoding for attributes, produced by LLVM versions 3.2 and
  earlier. It is guaranteed to be understood by the current LLVM version, as
  specified in the :ref:`IR backwards compatibility` policy.

``[ENTRY, paramidx0, attr0, paramidx1, attr1...]``

The ``ENTRY`` record (code 1) contains an even number of values describing a
unique set of function parameter attributes. Each *paramidx* value indicates
which set of attributes is represented, with 0 representing the return value
attributes, 0xFFFFFFFF representing function attributes, and other values
representing 1-based function parameters. Each *attr* value is a bitmap with the
following interpretation:

* bit 0: ``zeroext``
* bit 1: ``signext``
* bit 2: ``noreturn``
* bit 3: ``inreg``
* bit 4: ``sret``
* bit 5: ``nounwind``
* bit 6: ``noalias``
* bit 7: ``byval``
* bit 8: ``nest``
* bit 9: ``readnone``
* bit 10: ``readonly``
* bit 11: ``noinline``
* bit 12: ``alwaysinline``
* bit 13: ``optsize``
* bit 14: ``ssp``
* bit 15: ``sspreq``
* bits 16-31: ``align n``
* bit 32: ``nocapture``
* bit 33: ``noredzone``
* bit 34: ``noimplicitfloat``
* bit 35: ``naked``
* bit 36: ``inlinehint``
* bits 37-39: ``alignstack n``, represented as the logarithm
  base 2 of the requested alignment, plus 1

.. _PARAMATTR_GROUP_BLOCK:

PARAMATTR_GROUP_BLOCK Contents
------------------------------

The ``PARAMATTR_GROUP_BLOCK`` block (id 10) contains a table of entries
describing the attribute groups present in the module. These entries can be
referenced within ``PARAMATTR_CODE_ENTRY`` entries.

.. _PARAMATTR_GRP_CODE_ENTRY:

PARAMATTR_GRP_CODE_ENTRY Record
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``[ENTRY, grpid, paramidx, attr0, attr1, ...]``

The ``ENTRY`` record (code 3) contains *grpid* and *paramidx* values, followed
by a variable number of values describing a unique group of attributes. The
*grpid* value is a unique key for the attribute group, which can be referenced
within ``PARAMATTR_CODE_ENTRY`` entries. The *paramidx* value indicates which
set of attributes is represented, with 0 representing the return value
attributes, 0xFFFFFFFF representing function attributes, and other values
representing 1-based function parameters.

Each *attr* is itself represented as a variable number of values:

``kind, key [, ...], [value [, ...]]``

Each attribute is either a well-known LLVM attribute (possibly with an integer
value associated with it), or an arbitrary string (possibly with an arbitrary
string value associated with it). The *kind* value is an integer code
distinguishing between these possibilities:

* code 0: well-known attribute
* code 1: well-known attribute with an integer value
* code 3: string attribute
* code 4: string attribute with a string value

For well-known attributes (code 0 or 1), the *key* value is an integer code
identifying the attribute. For attributes with an integer argument (code 1),
the *value* value indicates the argument.

For string attributes (code 3 or 4), the *key* value is actually a variable
number of values representing the bytes of a null-terminated string. For
attributes with a string argument (code 4), the *value* value is similarly a
variable number of values representing the bytes of a null-terminated string.

The integer codes are mapped to well-known attributes as follows.

* code 1: ``align(<n>)``
* code 2: ``alwaysinline``
* code 3: ``byval``
* code 4: ``inlinehint``
* code 5: ``inreg``
* code 6: ``minsize``
* code 7: ``naked``
* code 8: ``nest``
* code 9: ``noalias``
* code 10: ``nobuiltin``
* code 11: ``nocapture``
* code 12: ``noduplicates``
* code 13: ``noimplicitfloat``
* code 14: ``noinline``
* code 15: ``nonlazybind``
* code 16: ``noredzone``
* code 17: ``noreturn``
* code 18: ``nounwind``
* code 19: ``optsize``
* code 20: ``readnone``
* code 21: ``readonly``
* code 22: ``returned``
* code 23: ``returns_twice``
* code 24: ``signext``
* code 25: ``alignstack(<n>)``
* code 26: ``ssp``
* code 27: ``sspreq``
* code 28: ``sspstrong``
* code 29: ``sret``
* code 30: ``sanitize_address``
* code 31: ``sanitize_thread``
* code 32: ``sanitize_memory``
* code 33: ``uwtable``
* code 34: ``zeroext``
* code 35: ``builtin``
* code 36: ``cold``
* code 37: ``optnone``
* code 38: ``inalloca``
* code 39: ``nonnull``
* code 40: ``jumptable``
* code 41: ``dereferenceable(<n>)``
* code 42: ``dereferenceable_or_null(<n>)``
* code 43: ``convergent``
* code 44: ``safestack``
* code 45: ``argmemonly``
* code 46: ``swiftself``
* code 47: ``swifterror``
* code 48: ``norecurse``
* code 49: ``inaccessiblememonly``
* code 50: ``inaccessiblememonly_or_argmemonly``
* code 51: ``allocsize(<EltSizeParam>[, <NumEltsParam>])``
* code 52: ``writeonly``

.. note::
  The ``allocsize`` attribute has a special encoding for its arguments. Its two
  arguments, which are 32-bit integers, are packed into one 64-bit integer value
  (i.e. ``(EltSizeParam << 32) | NumEltsParam``), with ``NumEltsParam`` taking on
  the sentinel value -1 if it is not specified.

.. _TYPE_BLOCK:

TYPE_BLOCK Contents
-------------------

The ``TYPE_BLOCK`` block (id 17) contains records which constitute a table of
type operator entries used to represent types referenced within an LLVM
module. Each record (with the exception of `NUMENTRY`_) generates a single type
table entry, which may be referenced by 0-based index from instructions,
constants, metadata, type symbol table entries, or other type operator records.

Entries within ``TYPE_BLOCK`` are constructed to ensure that each entry is
unique (i.e., no two indices represent structurally equivalent types).

.. _TYPE_CODE_NUMENTRY:
.. _NUMENTRY:

TYPE_CODE_NUMENTRY Record
^^^^^^^^^^^^^^^^^^^^^^^^^

``[NUMENTRY, numentries]``

The ``NUMENTRY`` record (code 1) contains a single value which indicates the
total number of type code entries in the type table of the module. If present,
``NUMENTRY`` should be the first record in the block.

TYPE_CODE_VOID Record
^^^^^^^^^^^^^^^^^^^^^

``[VOID]``

The ``VOID`` record (code 2) adds a ``void`` type to the type table.

TYPE_CODE_HALF Record
^^^^^^^^^^^^^^^^^^^^^

``[HALF]``

The ``HALF`` record (code 10) adds a ``half`` (16-bit floating point) type to
the type table.

TYPE_CODE_FLOAT Record
^^^^^^^^^^^^^^^^^^^^^^

``[FLOAT]``

The ``FLOAT`` record (code 3) adds a ``float`` (32-bit floating point) type to
the type table.

TYPE_CODE_DOUBLE Record
^^^^^^^^^^^^^^^^^^^^^^^

``[DOUBLE]``

The ``DOUBLE`` record (code 4) adds a ``double`` (64-bit floating point) type to
the type table.

TYPE_CODE_LABEL Record
^^^^^^^^^^^^^^^^^^^^^^

``[LABEL]``

The ``LABEL`` record (code 5) adds a ``label`` type to the type table.

TYPE_CODE_OPAQUE Record
^^^^^^^^^^^^^^^^^^^^^^^

``[OPAQUE]``

The ``OPAQUE`` record (code 6) adds an ``opaque`` type to the type table, with
a name defined by a previously encountered ``STRUCT_NAME`` record. Note that
distinct ``opaque`` types are not unified.

TYPE_CODE_INTEGER Record
^^^^^^^^^^^^^^^^^^^^^^^^

``[INTEGER, width]``

The ``INTEGER`` record (code 7) adds an integer type to the type table. The
single *width* field indicates the width of the integer type.

TYPE_CODE_POINTER Record
^^^^^^^^^^^^^^^^^^^^^^^^

``[POINTER, pointee type, address space]``

The ``POINTER`` record (code 8) adds a pointer type to the type table. The
operand fields are

* *pointee type*: The type index of the pointed-to type

* *address space*: If supplied, the target-specific numbered address space where
  the pointed-to object resides. Otherwise, the default address space is zero.

TYPE_CODE_FUNCTION_OLD Record
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. note::
  This is a legacy encoding for functions, produced by LLVM versions 3.0 and
  earlier. It is guaranteed to be understood by the current LLVM version, as
  specified in the :ref:`IR backwards compatibility` policy.

``[FUNCTION_OLD, vararg, ignored, retty, ...paramty... ]``

The ``FUNCTION_OLD`` record (code 9) adds a function type to the type table.
The operand fields are

* *vararg*: Non-zero if the type represents a varargs function

* *ignored*: This value field is present for backward compatibility only, and is
  ignored

* *retty*: The type index of the function's return type

* *paramty*: Zero or more type indices representing the parameter types of the
  function

TYPE_CODE_ARRAY Record
^^^^^^^^^^^^^^^^^^^^^^

``[ARRAY, numelts, eltty]``

The ``ARRAY`` record (code 11) adds an array type to the type table.  The
operand fields are

* *numelts*: The number of elements in arrays of this type

* *eltty*: The type index of the array element type

TYPE_CODE_VECTOR Record
^^^^^^^^^^^^^^^^^^^^^^^

``[VECTOR, numelts, eltty]``

The ``VECTOR`` record (code 12) adds a vector type to the type table.  The
operand fields are

* *numelts*: The number of elements in vectors of this type

* *eltty*: The type index of the vector element type

TYPE_CODE_X86_FP80 Record
^^^^^^^^^^^^^^^^^^^^^^^^^

``[X86_FP80]``

The ``X86_FP80`` record (code 13) adds an ``x86_fp80`` (80-bit floating point)
type to the type table.

TYPE_CODE_FP128 Record
^^^^^^^^^^^^^^^^^^^^^^

``[FP128]``

The ``FP128`` record (code 14) adds an ``fp128`` (128-bit floating point) type
to the type table.

TYPE_CODE_PPC_FP128 Record
^^^^^^^^^^^^^^^^^^^^^^^^^^

``[PPC_FP128]``

The ``PPC_FP128`` record (code 15) adds a ``ppc_fp128`` (128-bit floating point)
type to the type table.

TYPE_CODE_METADATA Record
^^^^^^^^^^^^^^^^^^^^^^^^^

``[METADATA]``

The ``METADATA`` record (code 16) adds a ``metadata`` type to the type table.

TYPE_CODE_X86_MMX Record
^^^^^^^^^^^^^^^^^^^^^^^^

``[X86_MMX]``

The ``X86_MMX`` record (code 17) adds an ``x86_mmx`` type to the type table.

TYPE_CODE_STRUCT_ANON Record
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``[STRUCT_ANON, ispacked, ...eltty...]``

The ``STRUCT_ANON`` record (code 18) adds a literal struct type to the type
table. The operand fields are

* *ispacked*: Non-zero if the type represents a packed structure

* *eltty*: Zero or more type indices representing the element types of the
  structure

TYPE_CODE_STRUCT_NAME Record
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``[STRUCT_NAME, ...string...]``

The ``STRUCT_NAME`` record (code 19) contains a variable number of values
representing the bytes of a struct name. The next ``OPAQUE`` or
``STRUCT_NAMED`` record will use this name.

TYPE_CODE_STRUCT_NAMED Record
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``[STRUCT_NAMED, ispacked, ...eltty...]``

The ``STRUCT_NAMED`` record (code 20) adds an identified struct type to the
type table, with a name defined by a previously encountered ``STRUCT_NAME``
record. The operand fields are

* *ispacked*: Non-zero if the type represents a packed structure

* *eltty*: Zero or more type indices representing the element types of the
  structure

TYPE_CODE_FUNCTION Record
^^^^^^^^^^^^^^^^^^^^^^^^^

``[FUNCTION, vararg, retty, ...paramty... ]``

The ``FUNCTION`` record (code 21) adds a function type to the type table. The
operand fields are

* *vararg*: Non-zero if the type represents a varargs function

* *retty*: The type index of the function's return type

* *paramty*: Zero or more type indices representing the parameter types of the
  function

.. _CONSTANTS_BLOCK:

CONSTANTS_BLOCK Contents
------------------------

The ``CONSTANTS_BLOCK`` block (id 11) ...

.. _FUNCTION_BLOCK:

FUNCTION_BLOCK Contents
-----------------------

The ``FUNCTION_BLOCK`` block (id 12) ...

In addition to the record types described below, a ``FUNCTION_BLOCK`` block may
contain the following sub-blocks:

* `CONSTANTS_BLOCK`_
* `VALUE_SYMTAB_BLOCK`_
* `METADATA_ATTACHMENT`_

.. _VALUE_SYMTAB_BLOCK:

VALUE_SYMTAB_BLOCK Contents
---------------------------

The ``VALUE_SYMTAB_BLOCK`` block (id 14) ...

.. _METADATA_BLOCK:

METADATA_BLOCK Contents
-----------------------

The ``METADATA_BLOCK`` block (id 15) ...

.. _METADATA_ATTACHMENT:

METADATA_ATTACHMENT Contents
----------------------------

The ``METADATA_ATTACHMENT`` block (id 16) ...

.. _STRTAB_BLOCK:

STRTAB_BLOCK Contents
---------------------

The ``STRTAB`` block (id 23) contains a single record (``STRTAB_BLOB``, id 1)
with a single blob operand containing the bitcode file's string table.

Strings in the string table are not null terminated. A record's *strtab
offset* and *strtab size* operands specify the byte offset and size of a
string within the string table.

The string table is used by all preceding blocks in the bitcode file that are
not succeeded by another intervening ``STRTAB`` block. Normally a bitcode
file will have a single string table, but it may have more than one if it
was created by binary concatenation of multiple bitcode files.